
Universidad Autónoma de Madrid
Escuela politécnica superior

Grado Universitario en
Ingenieŕıa Informática

Trabajo Fin de Grado

ALGORITMO DE DISEÑO
MATRICIAL DE CIRCUITOS

CUÁNTICOS

Javier Paŕıs Uhryn
Dra. Estrella Pulido Cañabate

21 de junio de 2018

ALGORITMO DE DISEÑO
MATRICIAL DE CIRCUITOS

CUÁNTICOS

Javier Paŕıs Uhryn
Dra. Estrella Pulido Cañabate

Escuela Politécnica Superior
Universidad Autónoma de Madrid

21 de junio de 2018

i

Resumen

Resumen

Este Trabajo de Fin de Grado tiene como objetivo el estudio de la computación cuántica y
el desarrollo de herramientas y algoritmos basados en ella.

La computación cuántica es un paradigma computacional en la actualidad muy poco desa-
rrollado, que basa su funcionamiento en fenómenos cuánticos, lo que permite la implementación
de nuevos algoritmos con potencia de cálculo paralelizable mucho mayores que los obtenibles
por ordenadores actuales.

El trabajo desarrollado comienza por el estudio y entendimiento del funcionamiento de un
ordenador cuántico y sus posibilidades de uso. Este tipo de ordenadores y este nuevo paradigma
conllevan un alto conocimiento matemático, aśı como conocimientos básicos sobre f́ısica cuánti-
ca y computación.

Una vez entendidas las bases de la computación cuántica, se estudia en profundidad ciertos
algoritmos cuánticos, en particular, el algoritmo de Grover. Este es un algoritmo de búsqueda
sobre un conjunto finito de elementos, con una complejidad computacional no alcanzable por
un ordenador lógico, pero con dificultades a la hora de ser programado en un ordenador cuántico.

Como enfoque principal de este trabajo se encuentra la creación de un algoritmo lógico
generalizable que automatiza la creación de circuitos cuánticos.

Se ha diseñado un nuevo algoritmo lógico que genera una concatenación de transformaciones
realizables por un ordenador cuántico para generar circuitos de más alto nivel que los actual-
mente existentes. En concreto, el algoritmo propuesto es capaz de generar un circuito cuántico
cuyo resultado equivalga a una matriz cualquiera dada.

Este algoritmo se ha demostrado matemáticamente a lo largo del trabajo y se ha implemen-
tado en un ordenador lógico, mediante el cual se ha probado su funcionalidad ejecutándolo para
diversos casos de prueba sobre un simulador cuántico y sobre un ordenador cuántico real.

Palabras clave

Ordenador cuántico, computación cuántica, qubit, puerta cuántica, algoritmo cuántico, al-
goritmo de Grover, circuito cuántico.

iii

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Abstract

This End-of-Degree Project aims to study quantum computing and the development of tools
and algorithms in it.

Quantum computing is a computational paradigm that is currently little developed, which
bases its operation on quantum phenomena. This allows the implementation of new algorithms
with parallelizable computing power greater than any current computer.

The work developed starts with the study of quantum computing and its functionality and
usability. This kind of computers and this new paradigm require a high knowledge of maths, or
basic knowledge about quantum physics and computer science.

Once knowing the basis of quantum computing, the study focuses on quantum algorithms
and Grover’s algorithm in particular. This is a search algorithm over a non sorted set of ele-
ments with lower coplexity than any possible logical program. But it has its difficulties when it
needs to be implemented in a real quantum computer.

The main focus of this work is the creation of a generalizable logical algorithm that automa-
tes the creation of quantum circuits. A new logical algorithm has been designed that generates a
concatenation of quantum transformations reliazable by a quantum computer to generate circuits
of higher level than those currently existing. In particular, the proposed algorithm is capable of
generating a quantum circuit which results to be equivalent to any given matrix.

This algorithm has been demonstrated mathematically throughout the work and has been
implemented in a logical computer, through which its efficiency has been proven with a quantum
simulator and with a real quantum computer.

Key words

Quantum computer, quantum computing, qubit, quantum gate, quantum algorithm, Grover’s
algorithm, quantum circuit.

iv

Agradecimientos

Finalizado el que ha sido el proyecto más importante de mi carrera (por ahora) hay mucha
gente a la que me gustaŕıa agradecer el haberme ayudado y haberme apoyado para conseguirlo.

Gracias a IBM, al equipo de desarrollo de QISKit y a la comunidad Q-Network, en especial
a Juan Gómez, por toda la ayuda y el esfuerzo dedicado y por hacer posible este y muchos otros
proyectos.

Muchas gracias a Gonzalo y a muchos otros profesores y alumnos de la UAM, que han
luchado e indagado en pos de ayudarme. Y a mi padre, que se devanó los sesos como el que más
para poder echarme una mano.

Un agradecimiento especial para Francisco y Estrella, por haberme abierto la posibilidad de
realizar este proyecto, y por ejercer de mentores y ayuda desde su comienzo.

Y muchas gracias a mis compañeros de la cátedra UAM-IBM por su ayuda, a mis queridos
yatekomo por aguantar mis divagaciones cuánticas, a mis serious math stuff por ayudarme con
cuentas matemáticas más allá de mi entendimiento, a la familia feliz por todos esos buenos
momentos, a mi pupi por motivarme en cada paso para conseguirlo, y en especial a Antonio,
quien considero un amigo y figura referente. Y por supuesto a toda mi familia, por vuestro
cariño y apoyo constante y por aguantarme d́ıa a d́ıa.

v

Índice general

Índice de figuras X

Índice de tablas XIII

Definiciones XV

Glosario XVII

1. Introducción 1

1.1. Motivación . 1

1.2. Objetivos . 1

1.3. Contenido . 2

2. Estado del arte 3

2.1. Ordenador cuántico . 3

2.2. Algoritmos cuánticos . 3

2.3. Diseño de circuitos . 4

2.4. Herramientas . 4

3. Introducción a la computación cuántica 5

3.1. Mecánica cuántica . 5

3.2. Ordenador cuántico . 6

3.3. Esfera de Bloch . 7

3.4. Notación matemática e interpretación matricial 8

3.5. Puertas cuánticas . 10

3.6. Circuitos y simuladores . 13

4. Algoritmo de Diseño Matricial de Circuitos Cuánticos 15

4.1. Introducción al algoritmo . 15

4.1.1. Idea principal . 15

4.1.2. Motivación . 15

4.1.3. Primera aproximación . 16

4.2. Descripción del algoritmo . 16

vii

Algoritmo de Diseño Matricial de Circuitos Cuánticos

4.2.1. Fundamento teórico . 17

4.3. Diseño . 17

4.3.1. Resumen de diseño . 17

4.3.2. Puertas básicas . 18

4.3.3. Puertas compuestas . 18

4.3.3.1. Puerta de giro condicionado . 18

4.3.3.2. Puerta de giro condicionado múltiple 20

4.3.3.3. Puerta Toffoli . 23

4.3.3.4. Puerta de giro especial . 23

4.3.3.5. Puerta de intercambio . 25

4.3.3.6. Puerta de ajuste matricial simple 27

4.3.4. Circuitos de ajuste a una matriz . 27

4.3.4.1. Puerta de ajuste diagonal . 28

4.3.4.2. Puerta de ajuste matricial . 28

4.3.5. Resultado del algoritmo . 29

4.4. Complejidad total . 29

4.5. Mejoras . 30

5. Implementación emṕırica del algoritmo 33

5.1. Implementación y simulador propio . 33

5.1.1. Diseño . 34

5.1.2. Complejidad . 35

5.1.3. Interfaz . 35

5.1.4. Otros Posibles Diseños . 36

5.2. Pruebas con IBM-Q . 37

5.2.1. Simulador . 37

5.2.2. Ordenador . 37

6. Conclusiones y trabajo futuro 39

6.1. Conclusiones . 39

6.2. Trabajo futuro . 40

Bibliograf́ıa XIX

Anexos XX

A. Algoritmo de Grover XXIII

A.1. Flujo . XXIII

A.1.1. Estado de superposición . XXIII

viii

Algoritmo de Diseño Matricial de Circuitos Cuánticos

A.1.2. Oráculo . XXIV

A.1.3. Amplificación de Amplitud . XXIV

A.1.4. Iteración de Grover . XXIV

A.2. Variantes . XXIV

A.3. Motivación . XXV

A.4. Demostraciones matemáticas sobre el algoritmo de Grover XXVI

A.4.1. Modelo básico . XXVI

A.4.2. Búsqueda de varios elementos . XXVIII

A.4.3. Búsqueda sobre un subgrupo . XXIX

A.5. Matrices relativas al algoritmo de Grover . XXIX

A.5.1. Oráculo . XXIX

A.5.2. Amplificación de amplitud . XXIX

A.5.3. Variante de amplificación de amplitud . XXX

B. Giros básicos XXXI

B.1. Demostración de matrices de giro . XXXI

B.2. Demostración de sobreyectividad . XXXIV

B.3. Demostración de suma de ángulos con concatenación de giros XXXIV

C. Demostraciones matemáticas del diseño de QCMD XXXVII

C.1. Giro condicionado . XXXVII

C.2. Giro condicionado múltiple . XL

C.3. Toffoli . XLII

C.4. Puerta de giro especial . XLII

C.5. Puerta de intercambio . XLIII

C.6. Puerta AMS . XLIII

C.7. Puerta diagonal . XLIII

C.8. Puerta matricial . XLIV

C.9. Uso del diseño 2 . XLV

D. Representaciones de giros en esfera de Bloch XLVII

D.1. Representación de un giro H . XLVII

D.2. Representación de un giro condicionado . XLVIII

D.2.1. Giro con target inactivo . XLVIII

D.2.2. Giro con target activo . XLIX

E. Ejemplo de funcionamiento del algoritmo QCMD LI

ix

Algoritmo de Diseño Matricial de Circuitos Cuánticos

F. Pruebas del algoritmo QCMD LV

F.1. Pruebas en el simulador . LV

F.2. Pruebas en el ordenador . LVI

x

Índice de figuras

3.1. Representación de una Esfera de Bloch. 7

3.2. Representación de los estados básicos de un qubit. 9

3.3. Representación de los giros básicos. 10

3.4. Ejemplo de circuito cuántico. Representación del Primer Estado de Bell 13

3.5. Circuito TT . 14

3.6. Circuito TTS†. 14

4.1. Puertas condicionadas estándar. 18

4.2. Teorema de construcción de una puerta condicionada. 19

4.3. Construcción de los circuitos para generar un giro concatenado. 19

4.4. Matrices que representan un giro condicionado. 20

4.5. Giro condicionado X en un circuito de 3 qubits. 20

4.6. Puerta condicionada múltiple. 20

4.7. Giro Z condicionado por 2 qubits. 21

4.8. Giro Z condicionado por 3 qubits. 21

4.9. Giro Z condicionado por 4 qubits. 21

4.10. Giro condicionado Y en un circuito de 3 qubits. 21

4.11. Puerta condicionada múltiple con qubits auxiliares. 22

4.12. Diseño de puerta Toffoli. 23

4.13. Diseño para la puerta de giro especial. 24

4.15. Circuitos de puertas XNOT y matrices asociadas 25

4.16. Caracteŕıstica matricial de las puertas XNOT. 25

4.17. Caracteŕıstica matricial de las puertas SWAP. 25

4.18. Diseño para la puerta de intercambio entre los estados lógicos |000〉 → |110〉. . . 26

4.19. Representación de la puerta de intercambio entre los estados lógicos |000〉 ↔ |110〉. 26

4.20. Diseño de una puerta matricial simple. 27

4.21. Diseño de puerta de ajuste diagonal para 2 qubits. 28

5.1. Resultados del ordenador cuántico para un circuito de 2 qubits. 38

5.2. Resultados del ordenador cuántico para un circuito de 3 qubits. 38

A.1. Representación geométrica de una iteración de Grover[1]. XXVIII

xi

Algoritmo de Diseño Matricial de Circuitos Cuánticos

D.1. Giro H. XLVII

D.2. Representación de concatenación de giros dos giros en el eje Y opuestos. XLVIII

D.3. Representación de concatenación de dos giros en el eje Y opuestos con giros Z
intercalados. XLIX

E.1. Diseño de puerta de ajuste matricial para 2 qubits. LII

F.1. Resultados del ordenador cuántico para un circuito de 2 qubits I. LVI

F.2. Resultados del ordenador cuántico para un circuito de 2 qubits II. LVII

F.3. Resultados del ordenador cuántico para un circuito de 2 qubits III. LVII

F.4. Resultados del ordenador cuántico para un circuito de 2 qubits IV. LVII

F.5. Resultados del ordenador cuántico para un circuito de 3 qubits I. LVIII

F.6. Resultados del ordenador cuántico para un circuito de 3 qubits II. LVIII

F.7. Resultados del ordenador cuántico para un circuito de 3 qubits III. LIX

F.8. Resultados del ordenador cuántico para un circuito de 3 qubits IV. LIX

F.9. Resultados del ordenador cuántico para un circuito de 3 qubits V. LX

xii

Índice de tablas

3.I. Tabla con los estados cuánticos estándar . 9

3.II. Giros básicos. X(α) denota un giro de α grados sobre el eje X 10

3.III.Puertas cuánticas básicas. Cada fila |x〉 representa el estado origen y el estado al
que transforma cada puerta. 11

3.IV.Puertas cuánticas de cambio de fase . 11

3.V. Tabla de verdad para los estados estándar siendo el primer qubit source y el
segundo target . 12

3.VI.Resultados de la concatenación de matrices en un mismo paso 13

4.I. Cálculo de complejidad y profundidad máxima (simplificada al máximo compo-
nente). para el diseño 1 . 30

4.II. Cálculo de complejidad y profundidad máxima (simplificada al máximo compo-
nente) para el diseño 2 . 30

4.III.Cálculo de complejidad y profundidad máxima para el diseño 2 con puerta Toffoli
constante . 31

B.I. Representación matricial de los giros básicos. XXXI

C.I. Tabla de verdad para giro condicionado múltiple de 2 qubits XL

C.II. Tabla de verdad para giro condicionado múltiple de 3 qubits XL

xiii

Definiciones

Algoritmo cuántico: Conjunto teórico de transformaciones ordenadas sobre uno o varios
qubits para obtener un resultado concreto.

Circuito cuántico: Concatenación de puertas cuánticas que afectan a uno o varios qubits.

Esfera de Bloch: Representación geométrica de una esfera de radio 1, en la cual puede
representarse el comportamiento teórico de un qubit.

Estado cuántico: Estado en el que se encuentra un qubit (es único en tiempo fijo) y del
que depende el valor real del qubit al medirlo.

Estado inicial básico: Estado de menor enerǵıa de los qubits en un ordenador cuántico
o estado de los qubits al iniciar un programa cuántico. Se representa mediante el estado
|0..., 0〉.

Ordenador cuántico: Máquina capaz de llevar entrelazamientos y transformaciones so-
bre qubits y capaz de medir los mismos.

Profundidad: Número de puertas cuánticas básicas que contiene un circuito cuántico.

Programa cuántico: Conjunto ordenado de transformaciones sobre uno o varios qubits
(similar a un circuito cuántico).

Puerta cuántica: Transformación sobre uno o varios qubits.

Puerta cuántica básica: Puerta que se da por hecho estará implementada f́ısicamente
sobre un ordenador cuántico.

QCMD: Quantum Circuit Matricial Design algorithm o Algoritmo de Diseño Matricial
de Circuitos Cuánticos.

Qubit: Unidad elemental de la computación cuántica con un valor probabiĺıstico medible
entre 0 o 1. En castellano se denomina Cúbit, aunque se considera aceptado Qubit y es el
término utilizado en este documento.

xv

Glosario matemático

〈φ|ψ〉: Notación de Dirac. 〈φ| representa una transformación y |ψ〉 un estado cuántico.

ε(α): ε(α) = eiα.

O(): Notación O grande o de cota superior asintótica.

Px: Representa la profundidad de la puerta x.

U(α): Giro de un qubit sobre el eje U de ángulo α.

Vectores y matrices: Los vectores se ha representado contenidos en paréntesis () y las
matrices contenidas en corchetes [].

xvii

1
Introducción

1.1. Motivación

La computación cuántica podŕıa considerarse a d́ıa de hoy una de las más plausibles apli-
caciones de las teoŕıas f́ısicas más modernas y un campo con un esfuerzo en investigación que
crece d́ıa a d́ıa. Este paradigma de computación casi recién nacido se encuentra en un estado
muy básico, donde la programación y la f́ısica se enfrentan a problemas fuera de nuestro enten-
dimiento, en una carrera por conseguir el primer ordenador cuántico funcional, capaz de realizar
cálculos en cuestión de segundos que antes se créıan imposibles por el tiempo que necesitaban.

La motivación principal que llevó a elegir este campo de estudio fue la posibilidad de contri-
buir en un paradigma de computación, hasta la fecha casi únicamente estudiado por los f́ısicos.
Parece una rama de estudio con infinidad de posibilidades, ya que todo es nuevo y en constante
crecimiento; aśı como un reto personal ante la idea de enfrentarse a fenómenos f́ısicos que nos
rodean y que escapan a nuestra razón.

La idea que persigue la computación cuántica es la paralelización perfecta de cálculos o al-
goritmos muy espećıficos, los cuales son aplicables a la resolución de problemas tan particulares
como importantes, como la famosa factorización de números primos, lo que conllevaŕıa un
colapso de la criptograf́ıa actual usada en internet. Pero esta tecnoloǵıa aún no se ha desarro-
llado lo suficiente como para permitir este tipo de cálculos, debido a limitaciones del hardware
actual, aśı como del software y la teoŕıa y algoritmia que la rodea.

La intención de este trabajo es ayudar a resolver ciertos aspectos relativos al software de
este paradigma de computación desde un punto de vista teórico pero aplicable, para intentar
dar un uso más simple y extendido a dicha tecnoloǵıa.

1.2. Objetivos

La idea inicial de este Trabajo de Fin de Grado es, partiendo del estudio del algoritmo
de Grover, algoritmo de búsqueda en computación cuántica, buscar aplicaciones para dicho
algoritmo o diseñar nuevos algoritmos basados en el ordenador cuántico.

1

Algoritmo de Diseño Matricial de Circuitos Cuánticos

El descubrimiento de que la mayor parte de la teoŕıa relativa a este algoritmo ya estaba
desarrollada y era muy dif́ıcil innovar sobre ello, hizo reconducir la investigación a la imple-
mentación desde un ordenador real de un algoritmo genérico para construir cualquier algoritmo
cuántico.

Análogamente a la computación lógica, los ordenadores cuánticos funcionan mediante qubits
(en español cúbit, es el análogo a un bit lógico. En este documento se usará la terminoloǵıa
inglesa) y puertas cuánticas (en vez de puertas lógicas). El objetivo principal de este trabajo es
el diseño de un nuevo algoritmo lógico que sea capaz de generar automáticamente las puertas
cuánticas necesarias para crear cualquier programa o circuito cuántico, que implemente un
determinado algoritmo o cálculo sobre un computador cuántico.

1.3. Contenido

Esta memoria está dividida en los siguientes caṕıtulos:

Estado del arte: En este caṕıtulo se hará una breve introducción al estado en el que
actualmente se encuentra la computación cuántica, aśı como a algoritmos e investigaciones
sobre el campo.

Introducción a la computación cuántica: En este caṕıtulo se hace una breve introduc-
ción a los conocimientos básicos matemáticos, f́ısicos y computacionales necesarios para
poder entender la computación cuántica, su utilidad, importancia y estado actual.

Algoritmo de Diseño Matricial de Circuitos Cuánticos: En este caṕıtulo se expli-
cará paso a paso el funcionamiento del algoritmo diseñado, y se incluirán demostraciones
matemáticas de su funcionamiento.

Implementación emṕırica del algoritmo: En este caṕıtulo se explica de forma resumi-
da la implementación propia de este algoritmo y las pruebas realizadas sobre el simulador
y el ordenador cuántico de IBM.

Conclusiones y trabajo futuro: Por último, en este caṕıtulo se recogen las diferentes
conclusiones extráıdas y se identifican posibles puntos de mejora y el trabajo futuro relativo
a este proyecto.

2 SECCIÓN 1: INTRODUCCIÓN

2
Estado del arte

2.1. Ordenador cuántico

La computación cuántica es un paradigma de programación que basa su funcionamiento
en la idea abstracta de Máquina de Turing Cuántica, la cual es capaz de realizar cierto tipo
de cálculos de forma mucho más veloz que un ordenador convencional basado en fundamentos
electromagnéticos.
Para llevar a cabo este tipo de cálculos es necesario un tipo de máquina denominada ordenador
cuántico, el cual explota los fenómenos relativos a la f́ısica cuántica. Actualmente estos efectos
solo son perceptibles en part́ıculas subatómicas y bajo condiciones extremas como altos gastos
de enerǵıa o temperaturas cercanas al 0 absoluto (en la actualidad se usan entornos a menos
temperatura que el espacio abierto).
Todo esto ha generado la conocida como carrera por la supremaćıa cuántica. Esto es una com-
petición por parte de diversas empresas o instituciones por conseguir un ordenador cuántico
de un tamaño (en número de qubits y tasa de error) capaz de realizar cálculos que escapan a
cualquier intento de simulación por parte de un ordenador actual[2].

En esta carrera se pueden encontrar grandes gigantes informáticos como Intel, que anunció
a principios del año 2018 su intención de construir un ordenador cuántico de 49 qubits, o
Google, que alrededor de las mismas fechas, anunció su intención de disponer durante este año
de un ordenador cuántico operativo de 72 qubits[3]. Existen también empresas como D-Wave,
centrada en el diseño y construcción de computadoras cuánticas[4], con colaboraciones con la
Nasa, Google y USRA entre otros. Cabe destacar entre estas empresas a IBM, la cual cuenta
con un servicio web mediante el cual se puede hacer uso de sus ordenadores cuánticos de manera
pública y gratuita. Este servicio web se ha utilizado en este trabajo para probar emṕıricamente
el resultado del algoritmo implementado.

2.2. Algoritmos cuánticos

Los algoritmos cuánticos son algoritmos diseñados para ser ejecutados en un ordenador
cuántico, y de esta forma aprovechar los fenómenos cuánticos para realizar cálculos en segundos
que en ordenadores convencionales llevaŕıan millones de años. Existen gran cantidad de algorit-
mos teóricos [5], como pueden ser el algoritmo de Grover, un algoritmo de búsqueda sobre

3

Algoritmo de Diseño Matricial de Circuitos Cuánticos

una secuencia desordenada, o el algoritmo de Shor que es capaz de factorizar un número en
factores primos.

En general, los algoritmos cuánticos se usan en campos orientados a la inteligencia artifi-
cial [6] y a la simulación de fenómenos cuánticos. Por ejemplo, en la actualidad son usados para
la simulación de comportamientos de ciertos compuestos qúımicos.

2.3. Diseño de circuitos

Este Trabajo de Fin de Grado se ha centrado en el diseño de un algoritmo orientado a
la computación cuántica mediante el cual se genera automáticamente un circuito de puertas
cuánticas que implementa cualquier algoritmo cuántico con matriz conocida. Esto en la actua-
lidad se lleva a cabo de manera manual por los programadores cuánticos.
Se ha investigado de forma exhaustiva para encontrar un algoritmo o proceso que realizase
esta función. Se ha investigado en libros [7] y art́ıculos y se ha consultado mediante internet
en distintas páginas y foros, como por ejemplo en Slack - QISKit [8], foro online formado por
profesionales y estudiantes del campo de la computación cuántica que usan la API de Python
QISKit desarrollada por IBM para el uso de su ordenador cuántico de forma online. Tras estas
investigaciones no se ha encontrado un algoritmo genérico (para cualquier número de qubits)
que implemente esta función.

Lo más cercano a este algoritmo que se ha podido encontrar ha sido un art́ıculo de investi-
gación donde se explica cómo implementar ciertos algoritmos para una máquina de 5 qubits[9]
y que hace referencia a la descomposición de Schmidt[10], operación matemática que sirve para
descomponer una matriz generada por un producto tensorial. Pero este método encuentra una
limitación a la hora de resolver grandes sistemas de ecuaciones cuando se aumenta el número
de qubits del ordenador.

2.4. Herramientas

Para la implementación del algoritmo diseñado, se ha usado el lenguaje de programación
Python 3.5 :: Anaconda 4.2 y libreŕıas estándar del mismo, sobre un entorno Ubuntu 16.04.

Para llevar a cabo las pruebas, se ha usado la API de Python QISKit [11] desarrollada por
IBM para usar simuladores cuánticos y un servicio web para lanzar pruebas contra el ordenador
cuántico IBM-Q de 5 qubits.

Para llevar a cabo la realización de esta memoria, se ha utilizado el lenguaje LATEXy ciertas
libreŕıas como blochsphere[12] para poder dibujar esferas de Bloch, o libreŕıas externas como
qpic[13] para crear las imágenes de los circuitos cuánticos mostrados.

4 SECCIÓN 2: ESTADO DEL ARTE

3
Introducción a la computación cuántica

En esta sección se hace una introducción a los conceptos técnicos necesarios para enten-
der la motivación y el diseño del algoritmo. Se abarcarán tanto los fenómenos f́ısicos que se
producen en el ordenador cuántico como los principios matemáticos necesarios para entender
todos los teoremas y demostraciones relativos a la computación cuántica de este documento. El
lector debeŕıa tener una base de conocimiento cient́ıfico en los campos de matemáticas, f́ısica
e informática para entender toda la argumentación, y seŕıa imposible abarcar todos los temas
necesarios, por lo que se aconseja que el lector esté familiarizado con números complejos,
operaciones con matrices y con ideas básicas de algoritmia y programación.
La f́ısica cuántica es un campo muy extendido y en actual desarrollo, y con una complejidad ma-
temática y f́ısica muy alta, por lo que la siguiente sección intentará no ser excesivamente formal,
centrándose sobre todo en las ideas claves mı́nimas para entender la computación cuántica.

3.1. Mecánica cuántica

La mecánica cuántica es una de las ramas más modernas de la f́ısica actual. Nacida en los
principios del siglo XX, y eclipsada parcialmente en sus inicios por otra teoŕıa que surgió a la
par: la teoŕıa de la relatividad, esta teoŕıa intenta explicar el comportamiento de las part́ıculas
subatómicas tales como quarks, electrones, etc.
Esta teoŕıa surgió como intento de explicar el problema de la radiación de cuerpo negro 1900,
por Max Plank, aunque las primeras formulaciones matemáticas no llegaron hasta el año 1920.

Fenómenos cuánticos A continuación enumeramos los fenómenos cuánticos más relevantes
e importantes a la hora de trabajar con un ordenador cuántico[14].

Principio de superposición: Según este principio, un elemento puede poseer simultánea-
mente dos o más valores (infinitos).

Principio de entrelazamiento: Este fenómeno cuántico introducido por Erwin Schrödin-
ger dice que dos o más part́ıculas entrelazadas no pueden considerarse como part́ıculas
individuales, sino como un sistema con una función de onda única para todo el sistema.

Colapso de la función de onda: Esta teoŕıa implica que la función de onda de un
sistema colapsa o toma un valor concreto una vez se interactúe con ella, por ejemplo, se
haga una medida. Esto hace que el sistema pierda su estado de superposición.

5

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Principio de decaimiento o emisión espontánea: Según este fenómeno, un átomo,
molécula, etc. excitado tiende a pasar a un estado de enerǵıa más bajo, cumpliendo aśı el
principio de conservación de la enerǵıa. Aunque este principio no afecta directamente al
uso teórico del ordenador, es muy importante a la hora de usar el ordenador real.

3.2. Ordenador cuántico

La computación cuántica es una rama dentro de la computación que basa su funcionamiento
f́ısico en fenómenos cuánticos, en vez de en fenómenos electromagnéticos, como la computación
lógica (también denominada computación binaria, clásica, electrónica o discreta).
La teoŕıa cuántica es algo nuevo y complejo que surgió a principios del siglo XX (aproximada-
mente 1920). En la década de los 80 se pensó en una aplicación de la mecánica cuántica para
crear una máquina de cálculo, lo cual se atribuye a Paul Benioff. En 1985, David Deutsch pre-
sentó el diseño de la llamada Máquina Cuántica de Turing, que seŕıa el equivalente cuántico
a la Máquina de Turing, y el pilar de la computación cuántica.

Qubit El elemento básico de la computación cuántica es el qubit. El bit lógico puede alma-
cenar un valor 0 o 1. Análogamente, el qubit almacena todos los valores entre 0 y 1 a la vez.
Un qubit se encuentra en un mismo momento en un solo estado cuántico, y este estado es el
que determina la probabilidad de que el qubit tenga uno u otro valor al ser medido.
Al igual que en la computación lógica, existen una serie de puertas que transforman el estado
cuántico de un qubit.

Ordenador cuántico Es una máquina compuesta de qubits, la cual basa su funcionamiento
en medir el estado de un qubit en un momento dado una vez aplicadas las transformaciones
(puertas) pertinentes, y pasa el resultado de esta medida a un ordenador lógico ligado. Esta
medición es un bit con valor 0 o 1, ya que pierde su estado de superposición al ser medido
(colapsar). Este conjunto de transformaciones es lo que se denomina algoritmo cuántico.

Uso en paralelización El hecho de que un qubit contenga más de un valor a la vez (y no
sólo uno, sino todos) es relacionable con la idea de la paralelización computacional.
Cualquier valor, ya sea número, carácter o texto (finito), puede ser codificado en una cadena
finita de bits. Si imaginamos que cada uno de nuestros bits puede contener un 0 y un 1 a la vez,
podemos deducir que tenemos en una cadena finita de bits todos los valores posibles de dicho
número, carácter o texto.
Hasta ahora, los sistemas de paralelización computacional se basan en usar varios procesadores,
los cuales llevan a cabo el mismo cálculo (o aproximado), y en un sistema que sea capaz de
organizar los cálculos de cada uno y de recoger y reorganizar sus resultados. El hecho de poder
contar con un elemento que tenga varios valores a la vez permite lo que se conoceŕıa como
paralelización perfecta.

Resultado probabiĺıstico El qubit contiene todos los valores a la vez, pero una vez se tome
una medida sobre él estos valores colapsan a un único valor. En nuestro caso los denotaremos
como 0 y 1 para seguir la analoǵıa con la computación lógica. La idea principal es que podemos
modificar nuestros qubits para que se acerquen más al estado 0 o al estado 1. Esto implica que
en el momento de nuestra medición, el resultado es, (con un cierto sesgo), aleatorio. Esto choca
con la idea básica de la computación lógica y la teórica Máquina de Turing, pues no podemos
anticipar el resultado de un cálculo antes de haberlo realizado.

6 SECCIÓN 3: INTRODUCCIÓN A LA COMPUTACIÓN CUÁNTICA

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Utilidad Existen gran variedad de algoritmos y cálculos realizables por un ordenador cuánti-
co que seŕıan impensables para un ordenador lógico debido al tiempo que requeriŕıa ejecutarlos.
Entre ellos se encuentra el Algoritmo de Grover (caṕıtulo A), o uno de los más famosos algo-
ritmos debido a su importancia en la criptograf́ıa actual, el Algoritmo de Shor.
(Para mas información sobre algoritmos cuánticos, consulte la bibliograf́ıa [5]).

Limitaciones Existen varias limitaciones a la hora de trabajar con computación cuántica.
Entre las limitaciones debidas al espećıfico y complejo hardware que necesita una máquina de
estas caracteŕısticas, encontramos el del decaimiento cuántico, lo que hace muy dif́ıcil mantener
el valor del estado de los qubits por mucho tiempo. En este momento se consigue mediante el
uso de superconductores y temperaturas cercanas al 0 absoluto.
También existen problemas a la hora de realizar mediciones sobre los qubits. Estas mediciones
de estados cuánticos se llevan a cabo sobre part́ıculas de tamaños subatómicos.
Existen también problemas debidos al software, como puede ser el hecho de que el resultado
sea aleatorio, lo que obliga a repetir un mismo cálculo muchas veces para asegurarse (nunca al
100 %) de que el resultado es fiable.
También existe la limitación de que el resultado de una operación cuántica debe ser siempre
reversible, contrariamente a lo que ocurre en una operación lógica, como podŕıa ser la operación
AND. Esto implica que en computación cuántica no se puede copiar información. Por ejemplo,
no se puede copiar el estado de un qubit a otro.

3.3. Esfera de Bloch

La Esfera de Bloch es un concepto matemático utilizado en la mecánica cuántica para
describir el comportamiento de un estado cuántico. Esta esfera ayuda a representar de una
forma visual y cómoda un estado cuántico, como puede ser un qubit[15].

(a) Representación de coorde-
nadas esféricas.

|state〉

(b) Representación de un esta-
do cualquiera.

|0〉

|1〉
(c) Estados |0〉 Norte y |1〉 Sur.

Figura 3.1: Representación de una Esfera de Bloch.

Qubit Un qubit puede representarse como un vector unitario (módulo 1) con origen en el
origen de coordenadas. De esta manera vemos que cualquier qubit puede representarse como
un punto en la superficie de una esfera de radio 1 (figura 3.1b), o una Esfera de Bloch. Este
qubit está representado uńıvocamente mediante dos valores, una elevación sobre el ecuador,
representado como ϕ y un acimut o fase representado como θ (figura 3.1a).
Se podŕıan usar 3 valores para representar un estado, ya sea mediante coordenadas cartesianas
o mediante coordenadas esféricas, pero uno de esos tres valores siempre va a ser dependiente de
los otros dos (debido a que el radio de la esfera es constante), por lo que es innecesario.
Al trabajar matemáticamente con un qubit, por sencillez a la hora de aplicar transformaciones,

SECCIÓN 3: INTRODUCCIÓN A LA COMPUTACIÓN CUÁNTICA 7

Algoritmo de Diseño Matricial de Circuitos Cuánticos

este se representa mediante un vector complejo, y no mediante estos dos ángulos.
Vamos a entender un qubit como un punto en la Esfera de Bloch. Si este punto se encuentra
en el punto Norte de la Esfera (figura 3.1c, azul) este qubit tendrá valor teórico 0 (100 % de
probabilidad de ser 0) y se representa con el nombre |0〉 (Este valor es puramente teórico. Debi-
do a errores de medición y al fenómeno de decaimiento no se puede asegurar 100 % el valor de
un qubit antes de medirlo). Análogamente, si el qubit está en el punto Sur (figura 3.1c, rojo)
tendrá valor 1 y se llamará |1〉.

Para cualquier otro punto en la esfera, el qubit se puede representar como una combinación

de los estados |0〉 y |1〉 de forma que cada estado se representa mediante un vector

(
a
b

)
, que

representa la combinación lineal a |0〉+b |1〉. Estos dos valores representan un punto en la esfera
de Bloch de forma que a = cos(ϕ2) y b = sin(ϕ2)eiθ, por lo que se cumple que |a|2 + |b|2 = 1
(necesario para que el vector sea unitario).

Transformaciones Las transformaciones básicas que existiŕıan en un ordenador cuántico son
representables con giros sobre los ejes de la esfera. De esta forma, un giro de 180 grados sobre el
eje X convertiŕıa un qubit |0〉 en |1〉 y viceversa, permitiéndonos modificar el valor de nuestro
qubit. Nótese que un giro sobre el eje Z no modifica el valor del qubit, pero śı su estado.

Más dimensiones Al igual que en la computación lógica, para dar sentido a un programa
o algoritmo es necesario más de un valor. En computación cuántica se pueden representar los
qubits como Esferas de Bloch individuales mientras no exista conexión entre estos, pero en el
momento en que un qubit entra en relación con otro esta representación deja de tener validez;
necesitaŕıamos una 5-esfera (esfera de 5 dimensiones), para usar su superficie de 4 dimensiones.
Por eso, en cuanto se trabaja sobre más de un qubit entrelazado, se usa notación matemática y
se deja aparte la intuición espacial.

3.4. Notación matemática e interpretación matricial

Bra-Ket En esta sección introduciremos la notación matemática necesaria para entender los
razonamientos matemáticos del algoritmo. Tanto en mecánica cuántica como en computación
cuántica se usa la notación bra-ket 〈φ|ψ〉 o notación de Dirac para representar valores cuánti-
cos. La notación bra 〈φ| se usa para representar transformaciones o aplicaciones sobre un estado
(matriz), y la notación ket |ψ〉 para representar estados cuánticos (vector).

Ket-Estado Un estado cuántico de un solo qubit se representa mediante dos ángulos acimut-
elevación o mediante un vector complejo unitario de dimensión 2. Es dif́ıcil establecer una
relación concreta entre los valores de este vector y la representación del qubit, pero aproxima-
damente puede entenderse que la primera dimensión representa una proporción entre 0 y 1 la
cercańıa del estado al norte de la esfera, y la segunda dimensión (compleja) representa la fase
o giro sobre el eje Z del qubit.
En la tabla 3.I se representan los estados básicos de la esfera (estos son los más representativos,
formados por el corte de los ejes con la esfera) y en la figura 3.2 se muestran estos estados
localizados en la esfera.

El estado |x〉 en la tabla 3.I es un ejemplo general sobre un estado cuántico cualquiera, y los
valores que se esperaŕıan de él. El vector debe ser unitario, es decir, cos2(ϕ/2) + sin2(ϕ/2) = 1.
Por ejemplo, si el estado |x〉 representase al estado |i〉, ϕ tendŕıa valor π/2 y por lo tanto su
probabilidad de ser 0 seŕıa cos2(π/4) = 0,5.

8 SECCIÓN 3: INTRODUCCIÓN A LA COMPUTACIÓN CUÁNTICA

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Se puede ver que los estados que se encuentran sobre el ecuador tienen las mismas probabilida-
des de ser 1 como de ser 0. Para denotar un estado se puede también usar la suma de distintos
estados. Por ejemplo, el estado |+〉 = |0〉 1√

2
+ |1〉 1√

2
.

Cuando se aumenta la dimensión (el número de qubits), el vector que representa a un
estado se duplica. De este modo, el estado |00〉 que representaŕıa dos qubits en el Norte de

la esfera, tendŕıa una representación como vector
(

1 0 0 0
)t

(t indica transpuesto, se usa
esta notación para evitar escribir vectores en vertical), y el estado |11〉 se representaŕıa con

el vector
(

0 0 0 1
)t

. Esto genera un problema a la hora de trabajar teóricamente con la
computación cuántica, ya que, teniendo n qubits, trabajamos con vectores de 2n dimensiones,
lo que complica la simulación en ordenadores lógicos.

nombre |0〉 |1〉 |+〉 |−〉

vector

(
1
0

) (
0
1

) (
1
1

)
1√
2

(
1
−1

)
1√
2

Probabilidad de tener valor ”0” 100 % 0 % 50 % 50 %
Probabilidad de tener valor ”1” 0 % 100 % 50 % 50 %

nombre |i〉 |j〉 |x〉

vector

(
1
i

)
1√
2

(
1
−i

)
1√
2

(
cos(ϕ/2)
sin(ϕ/2)eiθ

)
Probabilidad de tener valor ”0” 50 % 50 % cos2(ϕ/2)
Probabilidad de tener valor ”1” 50 % 50 % sin2(ϕ/2)

Tabla 3.I: Tabla con los estados cuánticos estándar

|0〉

|1〉

Z

(a) Estados |0〉 y |1〉.

|+〉

|−〉

X

(b) Estados |+〉 y |−〉.

|i〉
|j〉

Y

(c) Estados |i〉 y |j〉.

Figura 3.2: Representación de los estados básicos de un qubit.

Bra-Transformación Las transformaciones que se pueden aplicar sobre un estado cuántico
son giros sobre uno de los ejes de la Esfera de Bloch, o una concatenación de varios giros, lo que
equivale también a un giro.
Estos giros se representan mediante una matriz cuadrada de 2×2. Estas son matrices unitarias,
matrices cuyo módulo es 1 y que cumplen AA∗ = A∗A = I, donde A∗ representa la matriz
conjugada transpuesta.
La implementación a nivel f́ısico de estas transformaciones puede variar dependiendo del hard-
ware utilizado, pero se puede generalizar el uso de 3 transformaciones básicas (o como mı́nimo
dos de ellas, puesto que aplicando giros sobre 2 ejes distintos se puede obtener cualquier giro en
la esfera) que son los giros sobre los ejes principales de la Esfera. En la tabla 3.II se muestran

SECCIÓN 3: INTRODUCCIÓN A LA COMPUTACIÓN CUÁNTICA 9

Algoritmo de Diseño Matricial de Circuitos Cuánticos

las distintas representaciones matriciales para los giros que se puede realizar, y en la figura 3.3
se muestran dichos giros. La demostración de que estas matrices representan giros se puede ver
en el anexo B.[16]

X(α) Y(β) Z(γ)[
cos(α2) sin(α2)i
sin(α2)i cos(α2)

] [
cos(β2) −sin(β2)

sin(β2) cos(β2)

] [
1 0
0 eiγ

]
Tabla 3.II: Giros básicos. X(α) denota un giro de α grados sobre el eje X

X

(a) Giro X.

Y

(b) Giro Y.

Z

(c) Giro Z.

Figura 3.3: Representación de los giros básicos.

3.5. Puertas cuánticas

Ya se ha explicado que las transformaciones de estados son giros sobre los ejes de la Esfera.
Dos giros sobre distinto eje concatenados (uno detrás de otro) generan una transformación so-
breyectiva, esto es, pueden transformar cualquier estado en cualquier otro dentro de la Esfera de
Bloch (demostración en B). Pero al hablar sobre computación cuántica, es más común referirnos
a esas transformaciones como puertas cuánticas, que haŕıan las veces de puertas lógicas en
la computación lógica. Hay dos tipos de puertas: aquellas que afectan a un solo qubit, y una
puerta especial que afecta a dos qubits.

Puertas Unitarias Las puertas unitarias son aquellas que afectan a un solo qubit, como
pueden ser los giros representados en la figura 3.3, aunque comúnmente en la computación
cuántica se tiende a usar puertas estándar ya existentes en vez de los giros parametrizados
sobre los distintos ejes.
Cuando se habla de puerta cuántica y no de transformación se suele nombrar con una o varias
letras mayúsculas, por ejemplo X, aunque la representación correcta seŕıa 〈X|.
En la tabla 3.III se representan los giros sobre los ejes principales(puertas de Pauli[14]), aśı
como la puerta Hadamard o también llamada puerta H. Para cada uno de ellos se muestra los
estados estándar y a qué estados se transforman tras aplicar cada puerta.
En la sección 3.6 se describirá cómo modelar estas transformaciones de manera matemática.

Las tres puertas XY Z representan giros de ángulo π con respecto al eje que nombran. La
puerta Hadamard o puerta H es una transformación no trivial que surge de la concatenación
de un giro Y de 90◦ y un giro Z de 180◦. Esta puerta tiene una gran trascendencia porque
transforma el estado inicial |0〉 en un estado superpuesto |+〉, es decir, un estado con la misma
probabilidad de ser 0 y 1. Este giro se puede ver representado en el anexo D.1.

10 SECCIÓN 3: INTRODUCCIÓN A LA COMPUTACIÓN CUÁNTICA

Algoritmo de Diseño Matricial de Circuitos Cuánticos

nombre X Y Z H

matriz

[
0 1
1 0

] [
0 −1
1 0

] [
1 0
0 −1

] [
1 1
1 −1

]
1√
2

giro 180◦ sobre eje X 180◦ sobre eje Y 180◦ sobre eje Z
√
Y · Z

|0〉 −→ |1〉 |1〉 |0〉 |+〉
|1〉 −→ |0〉 |0〉 |1〉 |−〉
|+〉 −→ |+〉 |−〉 |−〉 |0〉
|−〉 −→ |−〉 |+〉 |+〉 |1〉
|i〉 −→ |j〉 |i〉 |j〉 |j〉
|j〉 −→ |i〉 |j〉 |i〉 |i〉

Tabla 3.III: Puertas cuánticas básicas. Cada fila |x〉 representa el estado origen y el estado al
que transforma cada puerta.

Como podemos apreciar en la tabla 3.III las puertas básicas transforman los estados estándar
entre ellos. Podemos ver también que estas operaciones son a su vez sus propias inversas, ya
que ∀φ se cumple que 〈XX|φ〉 = |φ〉, e igualmente se puede comprobar para cualquiera de las
puertas estándar.
Una duda razonable que puede surgir seŕıa el hecho de que el giro X no se corresponde con la
matriz solución de sustituir el ángulo. Esto no es una errata, pero tampoco tiene una explicación
trivial. Se explicará más adelante en esta misma sección.

Puertas de Fase Existen también las puertas de fase, incluidas en las puertas estándar.
Son aquellas que se corresponden con giros en el eje Z. Estas puertas, no modifican el valor final
del qubit, pero afectan a futuras operaciones sobre el mismo.
Todas las operaciones tienen una operación inversa, representada mediante el śımbolo † la cual
cumple ∀U ⇒ UU † = U †U = I. Si una misma puerta es su inversa (como se ha explicado antes)
no se usa la notación †. En la tabla 3.IV se muestran las puertas de fase junto a sus inversas y
algunos ejemplos de estados estándar y los estados finales en los que se ven transformados.

nombre S S† T T†

matriz

[
1 0
0 i

] [
1 0
0 −i

] [
1 0
0 1+i√

2

] [
1 0
0 1−i√

2

]
ángulo sobre Z π

2
−π
2

π
4

−π
4

|0〉 −→ |0〉 |0〉 |0〉 |0〉
|+〉 −→ |i〉 |j〉 (|0〉+ |1〉 eiπ/4) 1√

2
(|0〉+ |1〉 e−iπ/4) 1√

2

|i〉 −→ |−〉 |+〉 (|0〉+ |1〉 ei3π/4) 1√
2

(|0〉+ |1〉 eiπ/4) 1√
2

Tabla 3.IV: Puertas cuánticas de cambio de fase

En la tabla 3.IV se puede ver que dos puertas T generan una puerta S, y que dos puertas
S generan una puerta Z.

Teorema de Universalidad El teorema descrito en [7] implica que solo mediante las puertas
H y T se genera un sistema universal. Esto es, mediante la concatenación de operaciones de
estos dos tipos se puede llegar a cualquier punto de la Esfera. Esto tiene importancia en los
casos donde estas sean las operaciones básicas del ordenador. En nuestro caso vamos a usar los
giros parametrizados con los ángulos deseados, por lo que la universalidad la da el tener un set
infinito de transformaciones.

SECCIÓN 3: INTRODUCCIÓN A LA COMPUTACIÓN CUÁNTICA 11

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Puerta XNOT La puerta XNOT es la única puerta f́ısica que afecta a dos qubits y mediante
la cual se puede generar un sistema de mayores dimensiones.
Esta puerta se denomina X-NOT o XNOT y funciona como una CNOT lógica aplicada a uno
de los dos qubits. El qubit que modifica su valor se denomina target y el qubit del cual depende
esa modificación se denomina source.

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

Tabla 3.V: Tabla de verdad para los estados estándar siendo el primer qubit source y el segundo
target

Como vemos, esta puerta funciona como una puerta X sobre el segundo qubit, siempre que
el primer qubit tenga un valor de ”1”. Este efecto se consigue mediante el fenómeno del entre-
lazamiento cuántico. El primer qubit no tiene un valor concreto, por lo que la transformación
sobre el segundo no será concreta tampoco hasta que la onda no colapse.
Esta puerta se representa mediante una matriz cuadrada de 4× 4 mostrada en la ecuación 3.1.

|00〉
|01〉
|10〉
|11〉


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.1)

Las puertas estándar y giros parametrizados y la puerta XNOT crean el conjunto de las
Puertas básicas o puertas implementadas dentro de un ordenador cuántico. Este conjunto
genera un sistema universal, es decir, es suficiente para generar cualquier programa o circuito.

Puerta Identidad Sobre la Esfera de Bloch existen ciertas operaciones que se consideran
identidad, es decir: ∀U → UI = IU = U ⇔ I = identidad. Aunque no existe la puerta
identidad, existe un conjunto de matrices que equivalen a ella.
Para empezar, vemos que cualquiera de los giros, si los parametrizamos con un ángulo de valor

0, forman la matriz identidad

[
1 0
0 1

]
que devuelve a cualquier qubit afectado a él mismo.

Pero no es la única operación identidad que existe. Debido a la notación matemática escogida
para representar matricialmente los estados y las operaciones, cualquier operación que de como

resultado una matriz como esta:

[
ε(α) 0

0 ε(α)

]
∀α (se usa la notación ε(α) = eiα) genera

una operación identidad. Esto complica las operaciones a la hora de calcular los vectores que

representan el mismo estado. Por ejemplo el vector

(
−i
1

)
y el vector

(
1
i

)
representa el

mismo estado, y existen infinitas representaciones del mismo estado. Debido a esto, los estados
se representan de forma que la primera dimensión no tenga valores complejos, y de esta forma
solo existe una representación posible de cada estado. Es importante no confundir esto con el
hecho de que las transformaciones de fase no modifican el valor del qubit.

Puertas Compuestas En la siguiente sección veremos como se calcula matemáticamente la
concatenación de estas puertas básicas para dar lugar a circuitos o puertas compuestas, pero
para hacer una pequeña introducción, diremos que las puertas compuestas nacen de la unión de
una o más puertas concatenadas modificando uno o varios qubits al mismo tiempo, y generando
puertas de más alto nivel computacional.

12 SECCIÓN 3: INTRODUCCIÓN A LA COMPUTACIÓN CUÁNTICA

Algoritmo de Diseño Matricial de Circuitos Cuánticos

3.6. Circuitos y simuladores

Un programa cuántico es una concatenación de puertas básicas. Vamos a explicar las ope-
raciones matemáticas que modelan la concatenación de dichas puertas.

Circuitos Se llama circuito a una concatenación de puertas cuánticas básicas o complejas
(formadas por puertas básicas) y cada puerta se representa matemáticamente con una matriz.
Esta matriz se puede obtener a base de operaciones matemáticas.
Estos circuitos se representan mediante gráficos como el mostrado en la figura ejemplo 3.4. Cada
una de las ĺıneas horizontales representa un qubit, y las transformaciones que va sufriendo (se
lee de izquierda a derecha). El cuadrado representa una puerta básica, en este caso una puerta
de Hadamard. El ćırculo con una cruz representa que ese qubit será el target de una puerta
XNOT y el punto negro unido a este ćırculo representa que ese qubit será source para dicha
puerta.

Figura 3.4: Ejemplo de circuito cuántico. Representación del Primer Estado de Bell

Los circuitos se pueden dividir en pasos, donde cada paso equivale, o bien a una puerta
cuántica que afecta a varios qubits o a un conjunto de puertas unitarias sobre diferentes qubits,
es decir, que las operaciones son individuales y no se afectan entre ellas.
Cuando un paso está formado por puertas unitarias, se aplica un producto tensorial[17] sobre las
matrices para obtener la matriz esperada. En la tabla 3.VI se muestra tres circuitos formados
por puertas unitarias que afectan a un qubit u otro y sus matrices representativas, formadas
mediante el producto tensorial de la matriz correspondiente al primer qubit con la matriz
correspondiente al segundo qubit.

circuito

matriz qubit solución


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


|00〉 −→ |01〉 |10〉 |11〉

Tabla 3.VI: Resultados de la concatenación de matrices en un mismo paso

A la hora de concatenar varias puertas o pasos seguidos, el funcionamiento matemático
equivale a multiplicar las matrices soluciones de cada paso. Un ejemplo sencillo se ilustra en la
figura 3.5 donde se ve la concatenación de dos puertas T.
Como sabemos, la puerta T equivale a un giro de π

4 con respecto al eje Z, y la puerta S equivale
a un giro de π

2 . Por lo tanto vemos que una concatenación sobre un circuito de un solo qubit de
dos puertas T debeŕıa dar una matriz igual a S:

Aśı vemos como la multiplicación de matrices nos da el resultado esperado. Si seguimos con
este ejemplo, vemos que al concatenar las dos puertas T y una puerta S†, la solución debeŕıa
ser una matriz identidad. Esto se muestra en la figura 3.6.

Es importante tener en cuenta que la multiplicación de las matrices se lleva a cabo de forma

SECCIÓN 3: INTRODUCCIÓN A LA COMPUTACIÓN CUÁNTICA 13

Algoritmo de Diseño Matricial de Circuitos Cuánticos

[
1 0
0 ε(π4)

] [
1 0
0 ε(π4)

]
=

[
1 0
0 ε(π2)

]
(3.2)

Figura 3.5: Circuito TT .

[
1 0
0 ε(−π2)

] [
1 0
0 ε(π4)

] [
1 0
0 ε(π4)

]
=

[
1 0
0 1

]
(3.3)

Figura 3.6: Circuito TTS†.

inversa al orden lógico de las puertas. De esta manera, una puerta X concatenada detrás con

una puerta S daŕıa una matriz 〈XS| =
[

0 1
i 0

]
y no 〈SX| =

[
0 i
1 0

]
.

Simuladores Un Simulador Cuántico simula el funcionamiento de un ordenador cuántico
mediante la transformación de puertas a matrices, y realizando las operaciones necesarias para
generar la matriz final. De esta forma, dado un estado inicial y un circuito, se puede conocer la
matriz solución de dicho circuito, y multiplicando la matriz por el vector del estado, se obtiene
el vector del estado resultante.

Los simuladores trabajan siempre con un estado inicial |0..,00〉, que es el estado inicial por
defecto, o estado de menor enerǵıa. Esto es debido a que para partir de un estado que no fuese
el básico, debeŕıa aplicarse al estado básico un circuito previo, lo que equivaldŕıa a concatenar
ambos circuitos (recuérdese que en la computación cuántica no es posible copiar información ni
guardar un estado de una ejecución a otra).

14 SECCIÓN 3: INTRODUCCIÓN A LA COMPUTACIÓN CUÁNTICA

4
Algoritmo de Diseño Matricial de Circuitos Cuánticos

Este caṕıtulo constituye el fuerte de la investigación llevada a cabo durante el proceso de
este Trabajo de Fin de Grado. En este caṕıtulo se recoge toda la información relativa al Algo-
ritmo de Diseño de Circuitos Cuánticos (a aprtir de ahora QCMD - Quantum Circuit Matricial
Design algorithm).

4.1. Introducción al algoritmo

El algoritmo QCMD es un nuevo algoritmo diseñado para el ámbito de la Computación
Cuántica, pero pensado para ejecutarse en un ordenador o un autómata Lógico.

4.1.1. Idea principal

El propósito de este algoritmo es la posibilidad de abstracción a la hora de trabajar con pro-
gramas dentro de la computación cuántica. Como ya sabemos, el ordenador cuántico funciona
mediante un circuito que concatena transformaciones sobre qubits para llegar a un resultado
deseado. Este resultado se puede representar matemáticamente mediante una matriz.
La idea principal de este algoritmo es llevar a cabo el proceso contrario, es decir, dada una
matriz solución a la que se quiere llegar, construir automáticamente el circuito cuántico
necesario para llegar a ella. Análogamente a un ordenador electrónico, seŕıa crear un lenguaje
auxiliar mediante el cual construir un camino hardware para tener un procesador que, con una
entrada espećıfica (estado inicial básico) consiga una salida esperada, como seŕıa el caso del
lenguaje HDL (Hardware Description Language).

4.1.2. Motivación

Abstracción Uno de los principales problemas a la hora de enfrentarse a la creación de un
programa cuántico, es el hecho de que se trabaja a muy bajo nivel, a nivel de puertas básicas
sobre los qubits. El algoritmo propuesto permitiŕıa poder usar un ordenador cuántico sin tener
que conocer la f́ısica y el hardware interno, y de una forma más cómoda y rápida.

15

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Uso en algoritmos Este algoritmo nunca se usará a la hora de crear programas enteros, ya
que, si se conoce de antemano la solución no es necesaria la implementación del circuito. Pero
existen varios algoritmos cuánticos basados en la concatenación de matrices conocidas, de forma
que se conoce el resultado matemático esperado del mismo, pero no se conoce el circuito interior
que generaŕıa esa salida esperada.
Este es el caso del Algoritmo de Búsqueda de Grover descrito en el anexo A. Este es uno
de los algoritmos más importantes en la actualidad en el mundo de la computación cuántica ya
que permite una búsqueda en un conjunto no ordenado con una complejidad no alcanzable por
un ordenador lógico.
También se incluiŕıa entre los usos del algoritmo QCMD la generación de un circuito previo a
un algoritmo con circuito conocido, mediante el cual podŕıamos parametrizar el estado inicial
de entrada a dicho algoritmo simplemente con generar la matriz que transformaŕıa el estado
inicial básico en el estado inicial deseado.
De esta forma, el algoritmo reduciŕıa el trabajo de un programador cuántico al estudio teórico
y matemático del programa que quiere realizar, y no a la construcción del circuito de bajo nivel
que dará los resultados esperados.

4.1.3. Primera aproximación

La primera aproximación sobre cómo afrontar el problema fue mediante una búsqueda ex-
haustiva en árbol a través de las puertas básicas conocidas (X, H, T , etc.) hasta llegar a alcanzar
la matriz deseada.
El ĺımite de puertas necesarias para alcanzar dicho objetivo se describe en el art́ıculo de la
bibliograf́ıa [18]. Se sabe que existe una solución (H y T generan un conjunto universal) pero
el número de puertas necesario es muy alto.
Como es fácil de imaginar, esta aproximación teńıa una complejidad computacional extrema-
damente alta, y solo resultaba efectiva para circuitos de uno o dos qubits, y matrices con giros
comprendidos entre las puertas básicas. Los problemas que se encontraron, entre otros, fueron:

Multiplicación a cada paso de las matrices solución O(N3), N = 2n siendo n el número de
qubits y N el tamaño de la matriz.

Crecimiento exponencial a la hora de buscar en anchura en árbol.

La multiplicación de matrices es dif́ıcilmente rastreable, y da lugar a resultados que a la
vista podŕıan considerarse aleatorios, por lo que impide la poda trivial de ramas en la
búsqueda.

Por esto, esta primera aproximación se rechazó rápidamente.

Finalmente, la aproximación elegida para el diseño del algoritmo es la división de la matriz
principal en submatrices.

4.2. Descripción del algoritmo

En esta sección se describe el algoritmo, es decir, el fundamento teórico en el que se basa
su funcionamiento, las razones por las que se ha decidido tomar esta v́ıa, las demostraciones
matemáticas necesarias para comprobar que el algoritmo ciertamente genera lo esperado y el
cálculo de tiempo y espacio necesario para llevar a cabo la ejecución del mismo.

16 SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS

Algoritmo de Diseño Matricial de Circuitos Cuánticos

La idea principal de este algoritmo es generar un circuito para una matriz dada, pero los
pasos intermedios que se han diseñado (puertas compuestas) también suponen en śı mismas una
abstracción del problema de la programación a bajo nivel, y su uso también es generalizable
fuera del ámbito de este algoritmo.

Nótese que la idea principal del algoritmo es tratar de encontrar un circuito que genere una
matriz, y esta matriz es de tamaño N×N,N = 2n donde n es el número de qubits. Por tanto, sea
cual sea la implementación, será necesario un espacio mı́nimo de O(22n). Esta limitación existe
para cualquier algoritmo que intente generar un circuito mediante la construcción de una matriz.

Este diseño tiene el objetivo de encontrar de una forma sencilla y con una cota superior
en número de puertas, el circuito relacionado con una matriz. No intenta ser eficiente en número
de pasos del circuito, sino que basa más su funcionamiento en encontrar una solución entendible
y de fácil trazabilidad en un tiempo acotado superiormente.

4.2.1. Fundamento teórico

El teorema sobre el que se basa este algoritmo, demostrado en la bibliograf́ıa[7] indica que
cualquier matriz unitaria es divisible en un número finito de matrices unitarias que afecten
únicamente a dos filas y columnas, o lo que seŕıa lo mismo, una matriz 2 × 2 encajada en
una matriz diagonal de mayor dimensión.
Existe también un teorema en la documentación de la Quantum Experience IBM [19] en el que
se recoge la posibilidad de obtener una puerta cuántica condicionada para cualquier transfor-
mación necesaria. La única puerta cuántica condicionada básica es la XNOT , la cual es una
transformación X sobre un qubit. Esto se generalizará a cualquier transformación básica.

Se ha creado un sistema completo cimentado en estos teoremas donde se trabaja con puertas
cuánticas condicionadas con más de un qubit que crean giros muy espećıficos, los cuales tienen
una matriz muy acotada y controlable que se puede usar más adelante para dividir la matriz
principal.

4.3. Diseño

4.3.1. Resumen de diseño

Análogamente a un ordenador clásico, las puertas básicas de un ordenador cuántico (aquellas
implementadas a nivel hardware) se pueden concatenar para generar circuitos más complejos
y con distintas funcionalidades.
Este algoritmo se ha diseñado para generar distintos circuitos con complejidades ascendentes
de forma que mediante puertas básicas (lo que seŕıan puertas lógicas NOT o AND entre otras)
poder llegar a ciertas funcionalidades espećıficas (análogo a generar multiplexores o circuitos
combinacionales de mayor complejidad), hasta el punto de generar un algoritmo cuyo parámetro
de entrada sea una matriz, y que sea capaz de generar la concatenación interna de puertas para
crear un circuito cuántico que genere dicha matriz.

Esto quiere decir que se han ido creando puertas o circuitos cada vez de más alto nivel, hasta
llegar a un circuito capaz de generar la matriz deseada. Pero las puertas intermedias también
suponen una solución en śı mismas ante ciertos problemas actuales en la computación cuántica,
y tienen valor aún aisladas del resto del algoritmo.

SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS 17

Algoritmo de Diseño Matricial de Circuitos Cuánticos

4.3.2. Puertas básicas

Las puertas básicas, como se explicó en el caṕıtulo 3.5, son puertas que se encuentran
implementadas a nivel hardware en un ordenador cuántico (o se puede suponer que están im-
plementadas).
La profundidad (número de transformaciones a nivel hardware necesarias para alcanzar dicha
puerta) de dichas puertas es 1.

Las puertas que se van a usar para el diseño de este algoritmo son las puertas estándar X
y H, las puertas de giro parametrizadas sobre los ejes X(α), Y (β) y Z(γ), y la puerta XNOT .

4.3.3. Puertas compuestas

A partir de aqúı se describen los circuitos diseñados para el algoritmo. Aunque la concate-
nación de puertas básicas genere un circuito cuántico, estos circuitos se representan mediante
una matriz y suponen una transformación sobre los qubits de igual manera que hace una puerta
cuántica, por lo que se nombrarán también como puertas compuestas, que son el resultado de
concatenar otras puertas inferiores.

Varias de estas puertas teńıan ya formas de implementarse, como la puerta Toffoli, y algunas
otras existen solo de forma teórica (se usa matemáticamente su matriz pero sin la necesidad de
conocer la implementación a nivel f́ısico), como las puertas de giros condicionados, mientras que
otras son de diseño propio. En este caṕıtulo se incluyen todas las puertas y los diseños elegidos
para generarlas, aśı como el cálculo de la complejidad/profundidad de las mismas y la matriz
solución de cada una de ellas.

4.3.3.1. Puerta de giro condicionado

Esta es la primera puerta compuesta con la que vamos a trabajar, que es, a su vez, la base
de toda la estructura superior.
Esta puerta consta de un qubit source y un qubit target y de un parámetro ángulo que indica
el ángulo de giro sobre el eje destino. Su funcionamiento se basa en realizar el giro sobre uno
de los tres ejes principales sobre el qubit target siempre que el qubit source se encuentre en un
valor positivo (cuando su onda colapse a un valor positivo).

La puerta básica XNOT se consideraŕıa como un giro condicionado de 180◦ sobre el eje X.
Existen algunos circuitos simples para los giros más utilizados, como el giro de 180◦ sobre los
ejes Y (figura 4.1a) y Z (figura 4.1b), que solo se componen de puertas estándar.

(a) Puerta Y condicionada. (b) Puerta Z condicionada.

Figura 4.1: Puertas condicionadas estándar.

Según el teorema descrito en el libro de la bibliograf́ıa[7], cualquier puerta condicionada
puede generarse mediante la concatenación de puertas estándar y el uso únicamente de dos

18 SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS

Algoritmo de Diseño Matricial de Circuitos Cuánticos

puertas XNOT , como se muestra en la figura 4.2a. Esto quiere decir que para cualquier giro
U (no tiene que ser necesariamente en uno de los ejes principales) existen tres concatenaciones
de puertas A,B,C y una puerta de fase e tales que eCXBXA = U (figura 4.2c) y a su vez
CBA = I (figura 4.2b)

(a) Teorema de puertas condicionadas.

(b) Generación de la puerta identidad. (c) Generación de la puerta U.

Figura 4.2: Teorema de construcción de una puerta condicionada.

En lo que a nuestro algoritmo respecta, solo vamos a usar giros sobre los ejes principales,
debido a su sencillez y a que son suficientes para generar el resto de las puertas. Recordemos
que dos giros de distinto eje se asimilan a un giro en otro eje. Por lo tanto, con giros en dos de
los ejes principales distintos podemos crear cualquier giro.
Para el caso del eje Z sabemos que la creación de este giro es bastante sencilla debido a que, con-
catenando un giro de un ángulo α junto con otro −α conseguimos una transformación identidad.
Pero si introducimos un giro π sobre el eje X (también podŕıa ser sobre el Y) tras el primer giro
sobre Z, lo que conseguimos es que los dos giros sobre Z se concatenen, generando un giro de
ángulo 2α (demostración en C.1). Un giro en el eje Y tiene las mismas caracteŕısticas (demos-
tración en C.2). Se puede ver una representación gráfica de un giro condicionado Y (α) usando
puertas condicionadas Z en las figuras D.2 (sin activar la puerta Z) y D.3 (con puerta Z activa).

En el caso del eje X existe la diferencia de que los giros condicionados entre los dos giros X
debe ser en cualquiera de los otros dos ejes. Esto nos permite concluir con uno de los circuitos
más básicos que vamos a usar a partir de ahora, que se divide entre los tres giros (figura 4.3).

(a) Giro X condicionado.

(b) Giro Y condicionado. (c) Giro Z condicionado.

Figura 4.3: Construcción de los circuitos para generar un giro concatenado.

Podemos observar que hay tres formas distintas de crear un giro X. Para las dos primeras
se usa una puerta condicionada de ángulo π entre los ejes principales, y después se concatenan
los giros sobre el eje X. La última forma transforma la matriz del giro Y en una matriz de giro
X, como se demustra en la ecuación C.4.
La puerta en el qubit q0 del giro del eje Z tiene su explicación, pero no es una demostración
trivial. Es la puerta de fase e necesaria en el teorema descrito anteriormente.

Matriz La matriz de esta puerta está compuesta por una diagonal de elementos 1 menos en
los casos donde la puerta esté activada, donde se encuentra la matriz del giro. De esta forma,
en circuitos de solo dos qubits obtenemos una matriz como la representada en 4.1 para el caso
en que el qubit target sea el último qubit, o una matriz como 4.2 para el caso donde el primer
qubit sea target. Las variables a, b, c, d representan los valores relativos al giro en 1 qubit.

SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS 19

Algoritmo de Diseño Matricial de Circuitos Cuánticos

|00〉
|01〉
|10〉
|11〉


1 0 0 0
0 1 0 0
0 0 a b
0 0 c d

 (4.1)

|00〉
|01〉
|10〉
|11〉


1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d

 (4.2)

Figura 4.4: Matrices que representan un giro condicionado.

Al aumentar el número de qubits, el producto tensorial se lleva a cabo de igual manera que
con las puertas básicas. Por ejemplo, en la figura 4.5 se muestra como seŕıa un giro sobre el eje
X de ángulo α en un circuito de tres qubits, desde el primer al último qubit.

(a) Circuito re-
presentativo.

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 cos(α2) sin(α2)i 0 0
0 0 0 0 sin(α2)i cos(α2) 0 0
0 0 0 0 0 0 cos(α2) sin(α2)i
0 0 0 0 0 0 sin(α2)i cos(α2)


(b) Matriz solución del circuito.

Figura 4.5: Giro condicionado X en un circuito de 3 qubits.

Inversión Como ocurre con los giros básicos, los giros condicionados generan su inversa con el
mismo giro condicionado pero con ángulo inverso. Se puede ver la demostración en las ecuaciones
C.3 y C.5.

Complejidad (Pg) Esta ya es una puerta compuesta, lo que quiere decir que necesita de una
concatenación de instrucciones para llevarse a cabo. Como se puede ver fácilmente, el uso del
giro condicionado X no es eficiente, ya que para generar las puertas de giro Y o Z condicionadas
que haŕıan de auxiliares, se necesitan más puertas internas, por lo que el algoritmo no usará
puertas X condicionadas, y cuando sean necesarias se crearán mediante concatenación de las
otras 2.
Para tomar una medida concreta en cuanto a esta puerta, se tomará como cota superior el
número de puertas que usa el giro Z = 5, ya que es mayor que el giro Y = 4. Por lo tanto
podemos concluir que la complejidad de esta puerta. Pg = 5 = O(1) (Px indica la profundidad
de la puerta x. En este caso g representa a la puerta de giro condicionado).

4.3.3.2. Puerta de giro condicionado múltiple

Esta puerta corresponde a un giro igual al de una puerta de giro condicionada (ver 4.3.3.1)
pero donde existe más de un qubit source (Figura 4.6). Esto es, para que se lleve a cabo el giro,
todos los qubits source de la puerta deben tener valor 1.

Figura 4.6: Puerta condicionada múltiple.

20 SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Como vemos a continuación, existen dos diseños diferentes para ella, cada uno con sus
ventajas e inconvenientes.

Diseño principal En este diseño, la puerta con 2 qubits sources viene representada por la
figura 4.7[7] mientras que las demás puertas se generan de forma recursiva (ver figuras 4.8 y
4.9), de manera que se necesita una puerta condicionada con un source menos en cada paso,
acabando el último paso en una puerta condicionada simple. La lógica tras este diseño y los
diseños de niveles superiores (figura 4.8 y 4.9) no es trivial y se recoge en el anexo C.2. El diseño
de la puerta con 2 sources se ha recogido de la bibliograf́ıa, mientras que el diseño recursivo de
las puertas de más nivel es propio.

Figura 4.7: Giro Z condicionado por 2 qubits.

Figura 4.8: Giro Z condicionado por 3 qubits.

Figura 4.9: Giro Z condicionado por 4 qubits.

Matriz Esta matriz se construye de igual manera que la matriz de giro condicionado simple,
pero teniendo en cuenta que los valores que representan el giro solo deben aparecer en los puntos
correctos donde los sources estén activos. En la figura 4.10 se muestra un ejemplo.

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 cos(α2) 0 −sin(α2)
0 0 0 0 0 0 1 0
0 0 0 0 0 sin(α2) 0 cos(α2)


Figura 4.10: Giro condicionado Y en un circuito de 3 qubits.

Inversión Al igual que los giros condicionados simples, los giros condicionados múltiples ge-
neran su inversa mediante la inversión del ángulo del giro.

SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS 21

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Complejidad (Pm(d1)) La profundidad de esta puerta viene dada por la suma recursiva de
la complejidad de las puertas más pequeñas (con menos sources).
Para calcular la complejidad usaremos el parámetro s para referirnos al número de qubits source
de la puerta. El número de puertas básicas X es 2 para cualquier número de qubits. El número
de puertas XNOT es 2(s − 1) + 2(s − 2). El número de puertas necesario para las puertas
condicionadas múltiples inferiores es 3(Pm(s−1)) donde Pm(x) es la profundidad de una puerta
condicionada múltiple para x qubits source, y donde Pm(2) = 3Pg + 2 = 17. Por lo tanto, el
cálculo de profundidad de esta puerta será Pm(s) = 2 + 2(s−1) + 2(s−2) +Pm(s−1) de donde
obtenemos que Pm(s) = 22 · 3s−2 − 2s− 1 = O(3s). La demostración se puede ver en el anexo
C.2.

Diseño secundario En este segundo diseño se usan las puertas Toffoli (se verá con más
detalle en la siguiente sección 4.3.3.3) que funcionan como una puerta lógica AND. Es decir, se
puede generar un único qubit auxiliar que se encuentre a 1 si todos los demás qubits implicados
tienen valor 1, o a 0 en cualquier otro caso (figura 4.11), y de esta forma reducir el diseño a una
única puerta condicionada simple[7]. La demostración de este diseño se encuentra en la ecuación
C.12.
El problema principal de esta puerta es que necesita qubits extra para poder utilizarse, y estos
aumentan en 2x el tamaño actual de la matriz. También supondŕıan un problema dependiendo
del número de qubits disponibles en el ordenador cuántico. A cambio se ahorra muchas puertas
al evitar el carácter recursivo de la puerta (la puerta Toffoli sigue siendo una puerta condicionada
múltiple de dos sources que requiere construirse impĺıcitamente).

Figura 4.11: Puerta condicionada múltiple con qubits auxiliares.

La matriz y la forma de inversión de la puerta es independiente del diseño. Por lo tanto, en
este segundo diseño solo se modifica la complejidad.

Complejidad (Pm(d2)) Vemos que la profundidad para s qubits sources será de P(d2)2(s) =
2(s− 1)(Pt(2)) + Pg donde Pt(2) es la complejidad de una puerta Toffoli de 2 sources y Pg = 5
es la profundidad de la puerta de giro condicionada simple.

Podemos comprobar que, con este segundo diseño, la profundidad es mucho menor que con el
primer diseño, ya que en este caso se tiene una profundidad de O(s) mientras que con el primer
diseño teńıamos una profundidad de O(3s). Se ha elegido el primer diseño como principal debido
a que una de las grandes limitaciones de un ordenador cuántico actual es el número de qubits,
por lo que usar puertas que necesiten qubits auxiliares no siempre es una posibilidad. En el
resto del documento el uso del primer diseño se denotará mediante P(d1) y el segundo diseño
mediante P(d2).
El segundo diseño tiene otra limitación, que se debe a que construir las puertas Toffoli necesarias
conlleva una gran cantidad de puertas básicas. Como se demuestra en el anexo C.9 el uso del
segundo diseño será útil con circuitos mayores de 6 qubits.

22 SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS

Algoritmo de Diseño Matricial de Circuitos Cuánticos

4.3.3.3. Puerta Toffoli

Esta es una puerta condicionada múltiple particular. Se toma como puerta independiente
debido a su gran uso, pero en realidad se podŕıa sustituir por una puerta condicionada múltiple
de giro X y ángulo π. Esto hace que se comporte como una puerta XNOT (figura 4.12a) de
varios sources, o lo que es lo mismo, una puerta AND sobre su qubit target.
La construcción de esta puerta se puede realizar de la misma forma que las puertas condicionadas
múltiples, aunque esto conlleva usar la puerta condicionada X, que es menos eficiente. Por eso el
diseño elegido es el que se muestra en la figura 4.12b. La demostración de que esta concatenación
genera este giro se encuentra en la ecuación C.13.
También se puede generar un diseño de esta puerta igual al diseño secundario de la puerta
condicionada múltiple, teniendo en cuenta que la puerta Toffoli de 2 sources debe implementarse
expĺıcitamente, ya que es la base de dicho diseño.

(a) Puerta Toffoli. (b) Diseño de la puerta Toffoli.

Figura 4.12: Diseño de puerta Toffoli.

Matriz La matriz es igual que las matrices de las puertas condicionadas múltiples. El ejemplo
de la matriz para la puerta del ejemplo 4.12a se representa en la matriz 4.3.



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(4.3)

A pesar de la relativa simplicidad de la matriz solución, el diseño interno para llegar a dicho
cálculo es muy complejo.

Inversión Cualquier puerta Toffoli (para cualquier número de source) es su propia inversa,
debido a que se trata de una puerta condicionada múltiple de ángulo π.

Complejidad (Pt) La complejidad de esta puerta depende del número de qubits source s.
Podemos ver en la figura 4.12b que según este diseño, Pt(s) = 2Pm(s) = O(3s)(d1) ∨O(s)(d2)
(en función de la opción de diseño elegida).

4.3.3.4. Puerta de giro especial

A partir de aqúı las puertas son de diseño propio y no existentes en la actualidad.

Esta puerta representa el paso más importante a la hora de construir una matriz, que se
parametriza mediante dos parámetros complejos, que denominaremos a y b. El uso general de

SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS 23

Algoritmo de Diseño Matricial de Circuitos Cuánticos

esta puerta es generar un giro condicionado múltiple, donde todos los qubits salvo el último
sean source y el último qubit es el target.

Se quiere que este giro represente la matriz

(
a∗ b∗

b −a

)
1√

|a|2+|b|2
. Este giro se puede dividir

a su vez en una matriz parametrizada con tres valores, que es

(
cos(θ)ε(−x) sin(θ)ε(−y)
sin(θ)ε(y) −cos(θ)ε(x)

)
donde x = fase(a), y = fase(b), θ = sin−1(|b|√

|a|2+|b|2
) = cos−1(|a|√

|a|2+|b|2
). De esta manera

sabemos qué puertas debemos usar para llegar a crear este giro. El circuito para llegar a esta
puerta se muestra en la figura 4.13. Este circuito es generalizable a cualquier número de qubits
source (inclúıdo 0 para circuitos con un solo qubit). La demostración de este diseño se encuentra
en el anexo C.4.

Figura 4.13: Diseño para la puerta de giro especial.

La parte del circuito que aparece en azul en la figura 4.13 son unas puertas que generan una
transformación identidad (ver sección anterior 3.5), pero es necesario incluirlas en el diseño de
la puerta. Se usan para forzar a la matriz a coincidir con la matriz esperada, ya que existen
infinitas matrices que representan una misma transformación.

Matriz La matriz final de este giro con los parámetros a y b para dos qubits como la mostrada
en la ecuación 4.4. 

1 0 0 0
0 1 0 0

0 0
a∗√

|a|2 + |b|2
b∗√

|a|2 + |b|2

0 0
b√

|a|2 + |b|2
−a√
|a|2 + |b|2

 (4.4)

Para cualquier número de qubits, la matriz será diagonal exceptuando las dos últimas filas
y columnas, donde se observará el mismo caso que el mostrado anteriormente.

Inversión Para invertir esta puerta basta con sustituir el parámetro a por a∗, o lo que seŕıa
igual, sustituir el parámetro x por −x. De esta forma, conseguiremos generar una matriz 4.5 o
la matriz equivalente 4.6.


a√

|a|2 + |b|2
b∗√

|a|2 + |b|2
b√

|a|2 + |b|2
−a∗√
|a|2 + |b|2


(4.5)

[
cos(θ)ε(x) sin(θ)ε(−y)
sin(θ)ε(y) −cos(θ)ε(−x)

]
(4.6)

De esta manera es fácil demostrar que S(a, b)S(a∗, b) = I ⇒ S(a, b)† = S(a∗, b). Se demues-
tra en la ecuación C.15.

24 SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Complejidad (Ps) La complejidad de esta puerta depende de si se implementa de forma que
se genere el giro identidad. Para hacer nuestro cálculo de complejidad no vamos a añadir esa
parte del diseño, por lo que vemos que Ps(s) = 7Pm(s) = O(3s)(d1)∨O(s)(d2) siendo s el número
de qubits source (normalmente todos menos el último qubit).

4.3.3.5. Puerta de intercambio

Antes de explicar esta puerta, explicaremos primero una cualidad interesante que vamos
a explotar sobre la puerta XNOT, o en general, una puerta Toffoli con cualquier número de
sources. Las matrices de este tipo de puertas son matrices donde los elementos de su diagonal
son 1, excepto en dos puntos de la diagonal, donde el elemento diagonal es 0 y el elemento 1
de la misma se ha movido hasta la siguiente fila donde la diagonal no es 1. También cuentan
con la propiedad de que, concatenando esas puertas entre ellas, generan matrices con la misma
peculiaridad. Todo ello se puede ver mejor en la figura 4.15.


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Figura 4.15: Circuitos de puertas XNOT y matrices asociadas

Estas puertas cuya matriz cumple esta peculiaridad (matriz identidad salvo 2 filas/colum-
nas) cuentan con la caracteŕıstica que, si se implementan rodeando a cualquier otro circuito,
consiguen que su matriz invierta esas filas y columnas entre ellas. Un ejemplo práctico se mues-
tra en las figuras 4.16 y 4.17. Para ver la demostración de este efecto véase el anexo C.5.
En la figura 4.17 las puertas × representan una puerta SWAP que intercambia ambos qubits,
que se genera con una concatenación de XNOT como el tercer circuito de la figura 4.15.

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 1 0 0
0 0 a b
0 0 c d




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 d c
0 0 b a


Figura 4.16: Caracteŕıstica matricial de las puertas XNOT.


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 a b
0 0 c d




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d


Figura 4.17: Caracteŕıstica matricial de las puertas SWAP.

Esta caracteŕıstica nos permite mover las filas y columnas de una matriz desde la penúltima
y última columna (es donde los giros condicionados múltiples con el último qubit como target
tienen la submatriz de giro) hasta las filas y columnas que se deseen.
Para ello se usa una concatenación de puertas Toffoli, de modo que todos los qubits sean target
de alguna de ellas, y se usen todos los demás qubits como source, invertidos en algunos casos
para hacer que cada una de las puertas Toffoli convierta uno de los qubits desde el estado inicial
al estado final esperado.

SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS 25

Algoritmo de Diseño Matricial de Circuitos Cuánticos

En la figura 4.18 se muestra como se construiŕıa la puerta intercambio que cambiaŕıa la penúlti-
ma fila (|110〉) por la primera fila (|000〉). Explicado en detalle, el primer paso es modificar el
primer qubit de 0 a 1, por lo que queremos que la puerta Toffoli se active. Modificamos los qubits
que sean 0 por defecto para que activen dicha Toffoli, y tras esto los devolvemos a su estado
original. Aśı tendremos el estado |100〉. Al llegar al segundo qubit, necesitamos que también se
invierta, por lo que activamos la Toffoli (hay que tener cuidado, porque para el primer qubit
hay que tomar su valor ya cambiado y no el original). Al final, vemos que el último qubit no
necesita ser modificado, por lo que esa puerta Toffoli no se incluiŕıa en el circuito.

Figura 4.18: Diseño para la puerta de intercambio entre los estados lógicos |000〉 → |110〉.

La concatenación del circuito 4.18 antes y después de otro circuito hará que se inviertan las
filas primera y penúltima. Su matriz se puede ver en la matriz 4.7

0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1


(4.7)

Esta puerta tiene un funcionamiento complejo y no existe una forma estándar de represen-
tarla, por lo que se utilizará una puerta multiqubit, como se muestra en la figura 4.19. R se usa
como abreviatura de reverse.

Figura 4.19: Representación de la puerta de intercambio entre los estados lógicos |000〉 ↔ |110〉.

Matriz La matriz solución de esta puerta es la ya mostrada anteriormente. Todos los elemen-
tos de la diagonal son 1 menos dos de ellos, que son 0, y el valor 1 aparece en la intersección de
la fila y columna que se están intercambiando.

Inversión Las puertas de intercambio son su propia puerta inversa.

Complejidad (Pi) La complejidad de esta puerta proviene de la complejidad para generar las
puertas toffoli, y depende de la transformación que se quiera llevar a cabo, ya que cuantos más
bits se transformen, más puertas Toffoli necesitará. Por ello vamos a calcular una cota superior
de profundidad para esta puerta, sabiendo que el diseño nunca alcanzará este ĺımite. De esta
manera Pi(n) = n(Pt(n− 1) + 2(n− 1)) = O(n3n)(d1) ∨O(n2)(d2).

26 SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS

Algoritmo de Diseño Matricial de Circuitos Cuánticos

4.3.3.6. Puerta de ajuste matricial simple

La puerta de ajuste matricial simple (a partir de ahora AMS) es la transición entre las puer-
tas compuestas vistas hasta ahora, y la creación de un circuito que genere una matriz unitaria
dada. Esta puerta modifica un valor dentro de la matriz para generar una nueva matriz donde
ese valor sea 0 (se explicará en la subsección 4.3.4.2).
Esta puerta consta de los parámetros columna, fila, a, b. Los parámetros columna y fila repre-
sentan la columna y fila de la matriz input en la que queremos modificar el elemento, el valor
a representa al elemento que se encuentra en esa misma columna en la diagonal de la matriz,
y el valor b representa el valor del elemento de la matriz sobre el que estamos trabajando. Por

ejemplo, en la matriz

[
v00 v01
v10 v11

]
, si quisiésemos trabajar sobre el elemento v10, los parámetros

seŕıan:
[
columna = 0 fila = 1 a = v00 b = v10

]
.

La puerta que vamos a diseñar a continuación crea un giro especial con parámetros a y b, y
traslada la primera columna de este giro (penúltima de la matriz) a la columna columna y la
segunda columna (la última de la matriz) a la columna fila. Puesto que tanto las filas como
las columnas son simétricas, si movemos una columna a otra, se mueve también las filas. Esto
aparece representado en la figura 4.20. El orden de las puertas de intercambio es importante, ya
que podŕıa darse el caso en que columna fuese una de las columnas modificadas por la puerta
de giro especial, y por lo tanto esa operación alteraŕıa la operación fila. Por eso siempre se debe
hacer la operación de intercambio de fila externamente para que no interfiera (no importa que
en el circuito esta puerta se ejecute antes, la que se encuentre más interna modificará antes a
la matriz de la puerta de giro especial).

Figura 4.20: Diseño de una puerta matricial simple.

Matriz La matriz de esta puerta se asemeja a la matriz de la puerta de giro especial, salvo
que las filas y columnas se han intercambiado para llegar a un punto determinado. Por ejemplo,
la matriz correspondiente a la figura 4.20 siendo c = 0, f = 2 seŕıa como la matriz representada
en la matriz 4.8 

a∗√
|a|2 + |b|2

0
b∗√

|a|2 + |b|2
0

0 1 0 0
b√

|a|2 + |b|2
0

−a√
|a|2 + |b|2

0

0 0 0 1

 (4.8)

Inversión La inversión de esta puerta se obtendŕıa invirtiendo la puerta de giro especial que
contiene, como se demuestra en la ecuación C.17.

Complejidad (Pams) La profundidad de esta puerta es Pams(n) = 4(Pi(n)) + Ps(n − 1) =
O(n3n)(d1) ∨O(n2)(d2) siendo n el número de qubits.

4.3.4. Circuitos de ajuste a una matriz

Estos circuitos o puertas compuestas trabajan ya sobre una matriz inicial dada y generan
el circuito interno que es capaz de llegar a dicha matriz.

SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS 27

Algoritmo de Diseño Matricial de Circuitos Cuánticos

4.3.4.1. Puerta de ajuste diagonal

Esta es la primera puerta que trabaja sobre una matriz input y la transforma en un circuito
capaz de generar dicha matriz. En este caso solo resolveremos el problema para una matriz
diagonal.
En este caso, el diseño elegido para esta puerta es la concatenación de puertas de giro Z
condicionadas múltiples donde el target sea el último qubit y el resto de qubits sean source,
cuya solución seŕıa una matriz diagonal en la que el último elemento se ha sustituido el valor
con el que se haya parametrizado el giro. Este giro se rodea con puertas de intercambio para
que el valor del giro se coloque en la posición de la matriz que queremos modificar. Este paso se
repite para cada uno de los elementos de la matriz diagonal y de este modo se genera el circuito
cuyo funcionamiento teórico representa la matriz input. La demostración matemática de esta
puerta se puede ver en el anexo C.7.
En la figura 4.21 (R : x representa R(3, x)) se hace un ejemplo muy simple con 2 qubits que
corresponda al circuito que genera la matriz 4.9.


ε(α) 0 0 0

0 ε(β) 0 0
0 0 ε(γ) 0
0 0 0 ε(δ)

 (4.9)

Figura 4.21: Diseño de puerta de ajuste diagonal para 2 qubits.

La matriz de este tipo de puertas que trabajan generando matrices, ya sean diagonales o
completas, será la matriz que se está buscando.

No tendŕıa sentido hablar de puerta inversa, ya que este circuito es en śı un constructor de
una matriz, y no se necesita conocer su inversa (esta se daŕıa invirtiendo las puertas de giro).

Complejidad (Pd) La complejidad de este circuito para n qubits será de Pd(n) = N(Pm(n−
1) + 2Pi(n)) + Pm(n− 1) = O(Nn3n)(d1) ∨O(Nn3)(d2) siendo N = 2n.

4.3.4.2. Puerta de ajuste matricial

Esta es la última puerta necesaria para la generalización del problema. Con ella conseguimos
generar un circuito con una profundidad acotada superiormente y cuya funcionalidad se ajusta
a una matriz dada como parámetro de la puerta.
Esta puerta concatena puertas AMS para cada uno de los valores distintos de 0 que se encuentren
debajo de la diagonal de la matriz input, ordenando dichas puertas para ir recorriendo la matriz
por columnas de izquierda a derecha y de arriba a abajo. Esto va generando circuitos que al
concatenarse, generan la matriz final a la que se quiere llegar[7].
El objetivo es, para una matriz M dada, encontrar Ui tales que ∀i→ Ui sea una matriz unitaria
y diagonal exceptuando dos filas y dos columnas. Esto quiere decir que cada puerta Ui es una
matriz generable por una puerta AMS. Entonces, partiendo de M , podemos calcular U0M = V0,
donde V0 es una matriz similar a M pero donde uno de sus valores se ha transformado en 0.
Este procedimiento se repite hasta m veces, siendo m el número de valores distintos de 0 debajo
de la diagonal. A partir de la ecuación 4.10 vemos la concatenación de matrices que debemos
realizar para obtener M , con un ĺımite de m calculado en la ecuación 4.11.

28 SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS

Algoritmo de Diseño Matricial de Circuitos Cuánticos

0∏
i=m

(Ui)M = I =⇒M =
m∏
i=0

U †i (4.10)

m <
N−1∑
i=1

(N − i) =
N2 −N

2
(4.11)

De esta manera, concatenando las puertas AMS U †i obtendremos un circuito cuya matriz
solución sea la dada.
Con este diseño, en una matriz donde una columna entera bajo la diagonal tenga valores 0, el
valor de dicha columna en la diagonal no será obligatoriamente 1. Para evitar usar una puerta
AMS para modificar un único valor en la diagonal, usaremos la puerta de ajuste diagonal. De
esta manera, ahorraremos dos puertas de intercambio en cada punto de la diagonal que haya
que modificar, y usaremos una puerta condicionada múltiple en vez de una puerta AMS (mucho
más costosa).

El ejemplo general para cualquier circuito de 2 qubits se puede ver explicado matemática-
mente en C.8, mientras que un ejemplo de uso se puede ver en el anexo E.

Complejidad (PM) El ĺımite superior de complejidad de este circuito para n qubits será de
la mostrada en la ecuación 4.12 siendo N = 2n.

PM (n) =
N2 −N

2
(Pams(n)) + Pd(n)⇒ O(N2n3n−1) = O(n6n)(d1) ∨O(N2n2) = O(22nn3)(d2)

(4.12)

4.3.5. Resultado del algoritmo

El resultado del algoritmo QCMD es obtener un circuito de puertas básicas para generar
una matriz dada. Por lo tanto, la puerta de ajuste matricial es la solución de dicho algoritmo.
Esto quiere decir que, para una matriz dada, podemos generar una puerta de ajuste matricial
que se adapte a dicha matriz, y el circuito necesario para implementar dicha puerta será el
circuito solución buscado.

4.4. Complejidad total

El valor real de la cota superior del diseño se calcula despejando el número real de puertas
máximo que se usará en cada caso, teniendo en cuenta que las puertas básicas tienen profundidad
1. Por lo tanto, para n qubits podemos despejar la tablas 4.I para el diseño 1. Hay que tener en
cuenta la diferencia entre s, número de qubits source y n, número de qubits total. Las puertas
con s = 3 serán en realidad puertas sobre 4 qubits.

Para el diseño 2 se ha tomado como diseño de la puerta Toffoli de dos sources como la
representada en la figura 4.12b, con complejidad Pt(2) = 2(Pm(2)) = 2(17) = 34, y en la tabla
4.II se ve el cálculo completo de complejidad.

Vemos como el segundo diseño empieza a ser efectivo con puertas de giro condicionadas
múltiples de más de 5 qubits, pero como la puerta Toffoli reduce su complejidad, el circuito
final será más eficiente con el diseño 2 por encima de 4 quibts. Cálculo recogido en el anexo
C.9(cálculo según la complejidad, no según el número real de puertas).

SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS 29

Algoritmo de Diseño Matricial de Circuitos Cuánticos

puerta
complejidad
(d1)

profundidad
máxima(d1)

3 qubits 4 qubits 5 qubits 6 qubits

básica O(1) 1 1 1 1 1
giro condicionado O(1) 5 5 5 5 5
giro condicionado
múltiple (s)

O(3s) 22 · 3s−2 66 198 594 1782

toffoli (s) O(3s) 44 · 3s−2 132 396 1188 3564
giro especial (s) O(3s) 154 · 3s−2 462 1386 4158 12474
intercambio (n) O(n3n) 44n · 3n−3 132 528 1980 7128
AMS (n) O(n3n) 176n · 3n−3 528 2112 7920 28512
diagonal (n) O(n6n) 2n88n·3n−3 2112 16896 126720 912384

matricial (n) O(n12n)
22n176n ·
3n−3

33792 540672 8e(6) 1e(8)

Tabla 4.I: Cálculo de complejidad y profundidad máxima (simplificada al máximo componente).
para el diseño 1

puerta
complejidad
(d2)

profundidad
máxima(d2)

3 qubits 4 qubits 5 qubits 6 qubits

básica O(1) 1 1 1 1 1
giro condicionado O(1) 5 5 5 5 5
giro condicionado
múltiple (s)

O(s) 68s 204 272 340 408

toffoli (s) O(s) 68s 204 272 340 408
giro especial (s) O(s) 476s 1428 1904 2380 2856
intercambio (n) O(n2) n68(n− 1) 408 816 1360 2856
AMS (n) O(n2) n272(n− 1) 1632 3264 5440 11424
diagonal (n) O(2nn2) 2nn136(n− 1) 6528 26112 87040 731136
matricial (n) O(22nn2) 22nn272(n− 1) 104448 835584 5e(6) 3e(7)

Tabla 4.II: Cálculo de complejidad y profundidad máxima (simplificada al máximo componente)
para el diseño 2

Un dato que debemos tener en cuenta es que la construcción de la puerta Toffoli puede
reducirse en gran medida a un diseño más eficiente, variando altamente los valores obtenidos. Y
los valores obtenidos variaŕıan más aún si se pudiese contar con una puerta Toffoli implementada
f́ısicamente. En la tabla 4.III se resume los valores de profundidad que resultaŕıan de este
algoritmo para el diseño 2 si la construcción de la puerta Toffoli fuese constante. Se puede ver
como los valores y las complejidades se reducen vertiginosamente, y a esto se suma el hecho de
que solo seŕıa necesario 1 qubit auxiliar.

4.5. Mejoras

La complejidad total de todo el diseño del circuito tiene un carácter exponencial. Este
crecimiento es insalvable siempre que el diseño de construcción se base en crear uno por uno los
valores de la matriz, ya que el tamaño de la matriz crece de manera exponencial con el número
de qubits.
Por lo tanto, las mejoras referidas a este algoritmo QCDA se podŕıan aplicar a mejorar ciertas
puertas (al igual que el segundo diseño de la puerta condicionada múltiple) y a acotar y hacer
más eficientes cada uno de los pasos del algoritmo. Pero nunca se reduciŕıa el nivel exponencial
del mismo O(22n). Existen otras v́ıas para llegar a construir un circuito desde su matriz, como

30 SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS

Algoritmo de Diseño Matricial de Circuitos Cuánticos

puerta
complejidad
(d2)

profundidad
máxima(d2)

3 qubits 4 qubits 5 qubits 6 qubits

básica O(1) 1 1 1 1 1
giro condicionado O(1) 5 5 5 5 5
giro condicionado
múltiple (s)

O(1) 7 7 7 7 7

toffoli (s) O(1) 1 1 1 1 1
giro especial (s) O(1) 37 37 37 37 37
intercambio (n) O(n) 3n 9 12 15 21
AMS (n) O(n) 12n 36 48 60 84
diagonal (n) O(2nn) 2n3n 72 192 480 2688
matricial (n) O(22nn) 4n+13n 2304 12288 61440 1e(6)

Tabla 4.III: Cálculo de complejidad y profundidad máxima para el diseño 2 con puerta Toffoli
constante

seŕıa de Descomposición de Schmidt[10], pero estas se referiŕıan a un cambio en la idea
principal de este algoritmo y a su base de funcionamiento, por lo que se podŕıa considerar como
algoritmos diferentes.

SECCIÓN 4: ALGORITMO DE DISEÑO MATRICIAL DE CIRCUITOS CUÁNTICOS 31

5
Implementación emṕırica del algoritmo

En este caṕıtulo se incluye un resumen de un programa implementado para la demostración
emṕırica del algoritmo QCMD y las pruebas realizadas sobre el mismo.

5.1. Implementación y simulador propio

En esta sección se va a explicar un programa implementado para generar el algoritmo
QCMD. Este programa se ha escrito en lenguaje Python y simula el funcionamiento del al-
goritmo, generalizado a cualquier matriz unitaria y cualquier número de qubits de entrada. La
salida generada es un fichero .qasm (extensión del archivo escrito en ensamblador cuántico para
el ordenador de IBM).
Este programa no ha sido diseñado para presentar una implementación eficiente del algoritmo,
sino que se ha pensado para ser una demostración emṕırica del funcionamiento del mismo. Más
adelante podŕıa contemplarse la idea de crear una libreŕıa para hacer aplicable dicho progra-
ma como un ejecutable o un sistema interno para desarrollar un escritor automático de código
quantum assembler o qasm.

Este programa está publicado en un repositorio de GitHub y es público y accesible para cual-
quier persona que quiera ver su contenido. Este repositorio cuenta con varios scripts autóno-
mos que ejecutan dicho algoritmo automáticamente (según varios parámetros) y demuestran
emṕıricamente su funcionamiento mediante pruebas contra un simulador externo o contra un
ordenador cuántico real (IBM-Q).

La dirección para clonar el repositorio es:
https://github.com/jpUhryn/Quantum-Circuit-Matricial-Design-Algorithm.git

(Eeste código se ha escrito y comentado en inglés.)

33

https://github.com/jpUhryn/Quantum-Circuit-Matricial-Design-Algorithm.git

Algoritmo de Diseño Matricial de Circuitos Cuánticos

5.1.1. Diseño

El diseño que se ha elegido basa su funcionamiento en dividir el circuito en las mismas
puertas que se han visto con anterioridad en la sección 4.31.
Todas estas puertas se guardan en un diccionario, mapeadas por un id único que se va asignan-
do según se van generando dichas puertas. Cada puerta cuenta con una matriz que la representa
y un path que guarda los ids de las puertas que se han concatenado hasta llegar a ella. Cada
vez que se crea una nueva puerta, el programa genera el path necesario para construirla, y
recursivamente va generando las puertas inferiores necesarias que no hayan sido creadas aún.
Una vez creadas todas las puertas que se necesiten, se genera la matriz de la puerta, multipli-
cando las matrices de las puertas inferiores (las cuales a su vez se han generado multiplicando
las anteriores). Las únicas matrices que se generan automáticamente son las que representan
las puertas básicas (aquellas que no se consiguen por concatenación), por lo que el resultado
final de implementar un circuito desde una matriz es realmente la matriz del circuito. De esta
manera, en el caso de la puerta de ajuste matricial, sabemos que la matriz de dicha puerta es
la generada por el circuito y no la dada como parámetro de entrada.

Para ahorrar tiempo de ejecución, se ha diseñado un sistema de programación dinámica
donde, a la hora de buscar si una puerta está ya creada o no, utiliza un sistema de diccionarios,
donde el primer diccionario contiene como clave cada uno de los distintos tipos de puerta, y
cada elemento del diccionario es a su vez un diccionario que se mapea mediante un parámetro
de la puerta. Estos diccionarios contienen en su último atributo el id de una de las puertas
que responde a todos los parámetros. Si uno de los parámetros aún no ha sido incluido en el
diccionario indica que esta puerta aún no existe, y se auto genera esa rama para incluir dicho
id. De esta manera se puede saber rápidamente si una puerta existe ya, y si no crearla e instan-
ciarla en el diccionario automáticamente. De esta forma se reduce el tamaño del diccionario (si
contuviese todos los parámetros desde el principio tendŕıa una dimensión demasiado grande, y
si no se guardasen las puertas se haŕıan demasiadas llamadas recursivas a creación de puertas
simples), reducir el tiempo de búsqueda y evitar generar una puerta que ya existe. El único
punto importante a la hora de trabajar con este diccionario de diccionarios es saber que el
orden de los parámetros para cada tipo de puerta siempre debe ser el mismo.

El pseudocódigo 5.1 resume el funcionamiento de la creación de una puerta en el programa.

1 crearPuerta (t ipo , parametros , d i c c i o n a r i o) :
2

3 #puerta a buscar
4 nuevaPuerta
5

6 i f nuevaPuerta en d i c c i o n a r i o :
7 #s i ya e x i s t e se devuelve l a e x i s t e n t e
8 re turn nuevaPuerta . id
9

10 #s i no e x i s t e se genera
11 e l s e :
12

13 # l i s t a de puertas n e c e s a r i a s para c r ea r l a puerta ac tua l
14 c i r c u i t o N e c e s a r i o = ge ne ra rC i r cu i t o (parametros)
15

16 # puertas que generaran l a puerta buscada
17 c i r c u i t o = l i s t a V a c i a
18

19 f o r puer taNecesar ia en c i r c u i t o N e c e s a r i o : #para cada puerta n e c e s a r i a
20

1Esta implementación tiene algunas diferencias debido a que el algoritmo ha ido evolucionando desde que se
implementó. Por ejemplo, no existe la puerta diagonal. Además la implementación sigue únicamente el diseño 1.

34 SECCIÓN 5: IMPLEMENTACIÓN EMPÍRICA DEL ALGORITMO

Algoritmo de Diseño Matricial de Circuitos Cuánticos

21 # s i e x i s t e ya devuelve e l id , s i no crea l a puerta y devuelve e l nuevo id
22 c i r c u i t o . annadir (c rearPuerta (puertaNecesar ia , parametros , d i c c i o n a r i o))
23

24 #crea l a matr iz mediante l a s matr i ce s i n f e r i o r e s
25 nuevaMatriz = crearMatr i z (c i r c u i t o . matr iz)
26

27 #annade l a nueva puerta a l d i c c i o n a r i o
28 nuevoId = d i c c i o n a r i o . annadir (nuevaPuerta , parametros , nuevaMatriz ,

d i c c i o n a r i o)
29

30 #devuelve e l id de l a nueva puerta
31 re turn nuevoId

Listing 5.1: Pseudocódigo de funcionamiento

5.1.2. Complejidad

El cálculo más pesado en un programa que tenga funcionalidad de simulador cuántico es a
la hora de multiplicar las matrices, ya que esto equivale a una complejidad de O(N3) siendo N
el tamaño de la matriz.
Mediante el uso del diccionario (reusando puertas) se ahorra tiempo evitando generar varias
veces la misma puerta, lo cual puede llegar a hacerse pesado en aquellas con mucha profundidad;
y también evita la multiplicación excesiva de matrices, ya que una vez se haya generado una
puerta no es necesario volver a recalcularla. Con este diseño también nos aseguramos que cada
puerta está generada correctamente, ya que su matriz no se toma de su definición si no que se
calcula (exceptuando el caso de las puertas básicas).
Por lo tanto, se tiene un programa que funciona a la vez como implementación del algorit-
mo QCMD y como simulador de un ordenador cuántico, cuya complejidad total depende del
número de puertas inferiores que necesite la puerta en construcción. Esto da una complejidad
de

O(23n · 2nn3n−1) = O(24nn3n−1)

siendo n el número de qubits.

Seŕıa fácil eliminar de este diseño el apartado de multiplicación de matrices, usado como for-
ma de depurar la salida obtenida, y de esta manera el programa seguiŕıa funcionando reduciendo
su complejidad, pero sin opción a conocer la solución del circuito creado.

5.1.3. Interfaz

El programa basa su funcionamiento en recibir el tipo y los parámetros de un tipo de puerta
en concreto, y un diccionario sobre el que trabajar. Como salida devuelve el id de la puerta
solución, y en el diccionario se encuentran todas las puertas inferiores que se han utilizado. A
través de este id se puede visualizar la matriz, el path de los ids de las puertas directamente
inferiores y escribir dicha puerta en código qasm, el cual se genera de manera automática y
recursiva, entrando desde el diccionario en cada puerta hasta llegar a una puerta básica, la cual
escribe su instrucción o instrucciones ensamblador.

1 # i n i c i a l i z a un s i s tema de d i c c i o n a r i o s para 4 qub i t s
2 d i c = Dic t i onarySearcher (nQubits=4)
3

4 # genera una puerta de g i r o condic ionado mul t ip l e y l a s subpuertas n e c e s a r i a s
5 gate Id = AQP. generateMult ip leTurn (sour c e s = [0 , 1 , 2] , t a r g e t =3, ang le=math . p i /2 ,

turnType=TurnType . Z , d i c=d ic)
6

7 # genera e l f i c h e r o . qasm para c r ea r e s ta puerta

SECCIÓN 5: IMPLEMENTACIÓN EMPÍRICA DEL ALGORITMO 35

Algoritmo de Diseño Matricial de Circuitos Cuánticos

8 WriterAsm . writeAsm (gateId , dic , ” mult iCondit iona lGate . qasm” , r e s e t=True)

Listing 5.2: Ejemplo básico de uso (faltan libreŕıas e inicializaciones)

1 // Assembler f i l e : mult iCondit iona lGate . qasm f o r id : 35 //
2

3 OPENQASM 2 . 0 ;
4 i n c lude ” q e l i b 1 . inc ” ;
5 qreg q [4] ;
6 creg c [4] ;
7

8 // X−NOT − source : 2 t a r g e t : 3 //
9 cx q [1] , q [0] ;

10 // X−NOT − source : 2 t a r g e t : 3 //
11

12 // Basic Turn − Z t a r g e t : 3 ang le : 5 .890486225480862 //
13 u1 (5 .890486225480862) q [0] ;
14 // Basic Turn − Z t a r g e t : 3 ang le : 5 .890486225480862 //

Listing 5.3: Estracto del código .qasm obtenido

En el código 5.2 se puede observar un uso simple de dicho programa (se han omitido imports
y demás configuraciones anteriores) para generar una puerta de giro condicionado múltiple con
3 qubits sources, y un ángulo de π/2 sobre el eje Z. En el código mostrado en 5.3 se puede
apreciar por los comentarios que los qubits del circuito se invierten para concordar con los
estándares tomados para el compilado de .qasm. Las matrices y resultados no se ven afectados,
solo se modifica el hecho de elegir el qubit más significativo.

5.1.4. Otros Posibles Diseños

Prescindir de las matrices: Se puede evitar guardar cada matriz de cada puerta ya
que se conoce la solución esperada para cada puerta. De esta manera se ahorraŕıa una
gran cantidad de memoria y procesamiento al evitar la multiplicación. Este diseño no
permitiŕıa comprobar de forma eficiente la funcionalidad del algoritmo.

Usar funcionalidad qasm : El lenguaje qasm cuenta con un método de creación de
funciones para evitar repeticiones de puertas. Esto podŕıa disminuir el tiempo a la hora
de escribir el fichero .qasm. Esto no variaŕıa el número de puertas final a ejecutar sobre
el ordenador.

Automatizar diseño de nuevas puertas: Se podŕıa implementar el diccionario pa-
ra que permitiese incluir nuevos tipos de puertas en tiempo de ejecución, tomando los
parámetros como un array o diccionario.

Implementar el diseño 2 : Implementar el diseño 2 del algoritmo permitiŕıa una efi-
ciencia en profundidad mucho mayor. Este nuevo diseño requeriŕıa aumentar el número
de qubits de la matriz de forma exponencial, y por lo tanto seŕıa ineficiente a la hora de
tener que aguantar el cálculo de la multiplicación de matrices mayores. Esto podŕıa imple-
mentarse solo si se usase también el nuevo diseño comentado prescindir de las matrices.

Revisar eficiencia de las puertas: Las puertas se han generado mediante un diseño
que obtuviese la solución esperada, pero no de la manera más eficiente posible. Estos tipos
de puerta se podŕıan rediseñar para encontrar una solución más rápida y eficiente. Por
ejemplo, en la puerta de giro especial, está integrado el uso de la operación identidad para
que la matriz sea la esperada.

36 SECCIÓN 5: IMPLEMENTACIÓN EMPÍRICA DEL ALGORITMO

Algoritmo de Diseño Matricial de Circuitos Cuánticos

5.2. Pruebas con IBM-Q

Todas las pruebas aqúı mencionadas se pueden llevar a cabo descargándose el código del
repositorio y lanzando los scripts siguiendo las instrucciones de los mismos.

5.2.1. Simulador

Se ha diseñado un programa ejecutable en Python donde, dando una matriz deseada, calcula
el circuito asociado. Tras esto, genera el fichero .qasm donde recoge el circuito de dicha puerta,
y lo ejecuta en un simulador local incluido en la API QISKit, libreŕıa OpenSource desarrollada
por IBM para el uso del computador cuántico desde la nube. De esta ejecución obtenemos la
matriz que representa a dicho circuito, y aśı podemos contrastar que la solución es la esperada,
y con esto podemos demostar que el algoritmo funciona de forma teórica.

El programa relativo a esta ejecución y sus distintos tipos de prueba se puede ver en el
anexo F.1. Este código compara las matrices generadas por el programa propio, o en el caso de
las puertas de ajuste matricial, las matrices que se desean generar, con las matrices que genera
dicho código .qasm en el simulador de IBM. Se usa la función allclose de la libreŕıa numpy para
comparar dichas matrices y evitar el error de las operaciones en coma flotante con un error
relativo de e-8 y un error absoluto de e-5 (valores por defecto de la función allclose de numpy).
La salida de dicho programa es una recopilación de todas las pruebas, donde se muestra si las
matrices generadas y las simuladas son las mismas.

5.2.2. Ordenador

Para demostrar emṕıricamente el funcionamiento del algoritmo, se ha diseñado un programa
que prueba la eficiencia del algoritmo sobre el ordenador real. Este programa prueba la puerta
de intercambio y la puerta de ajuste matricial para una matriz determinada para cualquier
número de qubits. Se han elegido estas dos puertas debido a que el estado inicial del ordenador
es el estado |00..., 0〉 de menor enerǵıa, por lo tanto cualquiera de las otras puertas no afectaŕıan
a dicho estado.

Las gráficas 5.1 y 5.2 representa una ejecución de dicho programa, en el cual se puede ver
una simulación exacta del resultado teórico de un ordenador cuántico (azul), una simulación
aleatoria más semejante al comportamiento esperado del ordenador (amarillo) y las mediciones
reales llevadas a cabo en el ordenador cuántico de IBM. En la Gráfica 5.1 el circuito que se ha
simulado es un circuito generado por el algoritmo QCMD para la construcción de un estado
inicial superpuesto para los valores |00〉 y |11〉, y se ha generado mediante una puerta de ajuste
matricial con input la matriz 5.1.


1√
2

0 0
1√
2

0 1 0 0
0 0 1 0
1√
2

0 0 − 1√
2

 (5.1)

En la Gráfica 5.2 el circuito que se ha simulado es un circuito de intercambio de estados en
3 qubits, del estado |000〉 al estado |101〉, que equivale a la matriz 5.2.

SECCIÓN 5: IMPLEMENTACIÓN EMPÍRICA DEL ALGORITMO 37

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Figura 5.1: Resultados del ordenador cuántico para un circuito de 2 qubits.

Figura 5.2: Resultados del ordenador cuántico para un circuito de 3 qubits.



0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(5.2)

Se puede ver fácilmente como el resultado dado por el ordenador cuántico tiene una tasa
de error muy alta, aunque se puede apreciar que los estados solución cuentan con una pequeña
probabilidad superior al resto de estados.
También se puede ver que con mayor número de qubits, el error de la medición aumenta.

38 SECCIÓN 5: IMPLEMENTACIÓN EMPÍRICA DEL ALGORITMO

6
Conclusiones y trabajo futuro

6.1. Conclusiones

La computación cuántica es una rama de investigación aún en sus inicios, con una comple-
jidad matemática, f́ısica y computacional muy alta, y con un gran horizonte de posibilidades
aún por abrirse.
Una de las conclusiones de este trabajo de fin de grado ha sido conocer su funcionamiento,
y conocer sus diferencias con respecto a un ordenador lógico. Las leyes f́ısicas que rigen su
funcionamiento, que son aquellas que ofrecen tan alta potencia de cálculo a este paradigma
computacional, al mismo tiempo son las mismas que le impiden comportarse como una compu-
tadora lógica usual. Los principios de no almacenamiento y no copia de información limitan en
cierta medida las posibilidades de estas máquinas.
Pero a pesar de estas limitaciones, se trata de máquinas que son capaces de realizar cálculos
en segundos donde una máquina lógica necesitaŕıa más tiempo que la edad misma del universo.
Por lo tanto, puede que no sean las sustitutas de los ordenadores actuales, pero serán igual de
necesarias en el mundo moderno.

El algoritmo diseñado y explicado en este trabajo no es más que una primera aproximación
a un algoritmo posiblemente necesario en un futuro para todos aquellos que quieran hacer uso
de la computación cuántica. Es una idea inicial de como abstraer el problema de generar un
programa cuántico, desde el estado actual de la programación cuántica, que es usando direc-
tamente instrucciones sobre el hardware, a una idea más generalizable y puramente teórica de
nivel software. El algoritmo diseñado abstrae por completo el problema de la programación o
implementación real del algoritmo, reduciendo el problema de la algoritmia al campo puramente
matemático.

El estado actual de la computación cuántica limita en gran medida el uso de este o cualquier
otro algoritmo cuántico. Pero cualquier avance software sobre ella servirá para acortar el futuro
camino que se deberá recorrer para encontrarse a la par con el desarrollo y mejora del hardware
de dicha tecnoloǵıa.

39

Algoritmo de Diseño Matricial de Circuitos Cuánticos

6.2. Trabajo futuro

El algoritmo propuesto en este trabajo no está optimizado para ser eficiente, y también
cuenta con la desventaja de su complejidad exponencial. Pero a pesar de estas limitaciones, es
una demostración emṕırica de que cualquier resultado matricial puede ser programable en un
ordenador cuántico con un ĺımite máximo de operaciones requeridas; y es una primera aproxi-
mación necesaria para la abstracción del uso de dicho ordenador.

Por lo tanto, el trabajo futuro de este algoritmo podŕıa dividirse en tres puntos importantes.

En primer lugar, se podŕıa ajustar la eficiencia de cada una de las puertas intentando re-
ducir su cota máxima, lo que resultaŕıa en un algoritmo de similar complejidad máxima, pero
disminuiŕıa mucho el número de puertas en un diseño real.

En segundo lugar, se podŕıa mejorar dicho algoritmo buscando patrones de matrices cono-
cidas para evitar su construcción si ya existe una implementación eficiente de la misma.

En tercer lugar, se podŕıan buscar nuevas formas de dividir una matriz unitaria para su
creación, haciendo aśı que disminuya la complejidad total del algoritmo.

En conclusión, este algoritmo (al igual que la computación cuántica) se encuentra en un
estado inicial, que requiere de más estudio e innovación. Pero es un importante primer paso
para generalizar y abstraer el uso de la programación cuántica.

40 SECCIÓN 6: CONCLUSIONES Y TRABAJO FUTURO

Bibliograf́ıa

[1] Danski14. Own work, cc by-sa 3.0 https://commons.wikimedia.org/w/index.php?

curid=18415805.

[2] Varios autores. Quantum computing news https://quantumcomputingreport.com/

news/.

[3] Brad Jones. Three things you need to know about google’s new quantum processor https:
//futurism.com/googles-new-quantum-processor/.

[4] Elizabeth Gibney. Nature. d-wave upgrade how scientist are using the worlds most contro-
versial quantum computer.

[5] Stephan Jordan. Algebraic and number theoretic algorithms https://math.nist.gov/

quantum/zoo/.

[6] U. Alvarez-Rodriguez, M. Sanz, L. Lamata, and E. Solano. Quantum Artificial Life in an
IBM Quantum Computer. ArXiv e-prints, November 2017.

[7] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Informa-
tion: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th
edition, 2011.

[8] Profesionales y estudiantes de la computación cuántica. Foro online https://qiskit.

slack.com/.

[9] Patrick J. Coles, Stephan Eidenbenz, Scott Pakin, Adetokunbo Adedoyin, John Ambro-
siano, Petr M. Anisimov, William Casper, Gopinath Chennupati, Carleton Coffrin, Hris-
to Djidjev, David Gunter, Satish Karra, Nathan Lemons, Shizeng Lin, Andrey Y. Lok-
hov, Alexander Malyzhenkov, David Mascarenas, Susan M. Mniszewski, Balu Nadiga, Dan
O’Malley, Diane Oyen, Lakshman Prasad, Randy Roberts, Philip Romero, Nandakishore
Santhi, Nikolai Sinitsyn, Pieter Swart, Marc Vuffray, Jim Wendelberger, Boram Yoon, Ri-
chard J. Zamora, and Wei Zhu. Quantum algorithm implementations for beginners. CoRR,
abs/1804.03719, 2018.

[10] Quantum Computation and Quantum Information. Cambridge University Press, New York,
NY, USA, 2000.

[11] Varios autores. Qiskit - quantum information science kit https://qiskit.org/.

[12] Matthew Wardrop. latex-blochsphere https://github.com/matthewwardrop/

latex-blochsphere.

[13] Thomas Draper Sandy Kutin. qpic - free software https://github.com/qpic/qpic.

[14] Giuliano Benenti, Giulio Casati, and Giuliano Strini. Principles of Quantum Computation
And Information: Basic Tools And Special Topics. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 2007.

XIX

https://commons.wikimedia.org/w/index.php?curid=18415805
https://commons.wikimedia.org/w/index.php?curid=18415805
https://quantumcomputingreport.com/news/
https://quantumcomputingreport.com/news/
https://futurism.com/googles-new-quantum-processor/
https://futurism.com/googles-new-quantum-processor/
https://math.nist.gov/quantum/zoo/
https://math.nist.gov/quantum/zoo/
https://qiskit.slack.com/
https://qiskit.slack.com/
https://qiskit.org/
https://github.com/matthewwardrop/latex-blochsphere
https://github.com/matthewwardrop/latex-blochsphere
https://github.com/qpic/qpic

Algoritmo de Diseño Matricial de Circuitos Cuánticos

[15] Diederik Aerts and Massimiliano Sassoli de Bianchi. The extended bloch representation of
quantum mechanics and the hidden-measurement solution to the measurement problem.
Annals of Physics, 351:975 – 1025, 2014.

[16] V. V. Shende, S. S. Bullock, and I. L. Markov. Synthesis of quantum-logic circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6):1000–
1010, June 2006.

[17] C. Lavor, L. R. U. Manssur, and R. Portugal. Grover’s Algorithm: Quantum Database
Search. eprint arXiv:quant-ph/0301079, January 2003.

[18] C. M. Dawson and M. A. Nielsen. The Solovay-Kitaev algorithm. eprint arXiv:quant-
ph/0505030, May 2005.

[19] Varios autores. Ibm quantum experience - user guide https://quantumexperience.ng.

bluemix.net/qx/tutorial?sectionId=full-user-guide&page=introduction.

[20] K. Srinivasan, B. K. Behera, and P. K. Panigrahi. Solving Linear Systems of Equations
by Gaussian Elimination Method Using Grover’s Search Algorithm: An IBM Quantum
Experience. ArXiv e-prints, December 2018.

[21] A. Wichert. Principles of Quantum Artificial Intelligence. World Scientific, 2013.

[22] Varios autores. Ibm quantum experience - advanced single-qubit gates https:

//quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide&

page=002-The_Weird_and_Wonderful_World_of_the_Qubit~2F004-advanced_qubit_

gates.

XX

https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide&page=introduction
https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide&page=introduction
https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide&page=002-The_Weird_and_Wonderful_World_of_the_Qubit~2F004-advanced_qubit_gates
https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide&page=002-The_Weird_and_Wonderful_World_of_the_Qubit~2F004-advanced_qubit_gates
https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide&page=002-The_Weird_and_Wonderful_World_of_the_Qubit~2F004-advanced_qubit_gates
https://quantumexperience.ng.bluemix.net/qx/tutorial?sectionId=full-user-guide&page=002-The_Weird_and_Wonderful_World_of_the_Qubit~2F004-advanced_qubit_gates

Anexos

XXI

A
Algoritmo de Grover

El Algoritmo de Grover es un algoritmo cuántico para la búsqueda de un elemento en
una secuencia no ordenada de datos.

Este algoritmo, junto con el Algoritmo de Shor para la factorización de números, son los
algoritmos cuánticos más conocidos, debido a su utilidad a la hora de agilizar cálculos actual-
mente complejos para la computación lógica.
Este algoritmo recibe su nombre del cient́ıfico de la computación Lov Kumar Grover (nacido en
1961) a quien se atribuye su invención en 1996.

Este algoritmo es famoso debido a que consigue una complejidad O(
√
N) al buscar un

elemento en una cadena de N elementos no ordenados cuando un algoritmo de computación
lógica no puede bajar de una complejidad O(N)[17].

A.1. Flujo

El algoritmo de Grover es un algoritmo iterativo generalizable a cualquier número de qubits,
que basa su funcionamiento en tres pasos. La idea principal es partir de un estado de superpo-
sición donde todas las cadenas de bits tengan la misma probabilidad de ser medidas, y aplicar
iterativamente un oráculo, que es una función que invierte aquella cadena que se está buscan-
do; y un amplificador de amplitud, que aumenta la probabilidad de medir aquellos valores
que se encuentran en negativo.

A.1.1. Estado de superposición

El primer paso es inicializar el estado principal a un estado de superposición. Esto es,
un estado donde todos los qubits se encuentren superpuestos (igual probabilidad de ser 0 y 1).
Para esto, se utiliza una puerta Hadamard para cada uno de los qubits, convirtiendo el estado
de mı́nima enerǵıa |00.., 0〉 en un estado de superposición |+ + ..,+〉.

XXIII

Algoritmo de Diseño Matricial de Circuitos Cuánticos

A.1.2. Oráculo

Esta parte de la iteración es particular para cada elemento a buscar, y representa la función
de búsqueda. Esta función debe tener la peculiaridad de que f(x) = 1 para todos aquellos
valores que se están buscando, y f(x) = 0 en otro caso.
Lo que se busca es usar una función 〈U | sobre un estado cualquiera |x〉 de tal forma que
〈Uω|x〉 = (−1)f(x) |x〉. De esta forma, aquellos estados que activen o devuelvan un 1 en la fun-
ción, sufrirán una inversión de signo (recordar que esto no afecta a su amplitud, ni, por lo tanto,
a su probabilidad).

A.1.3. Amplificación de Amplitud

Esta parte del algoritmo es generalizable para cualquier búsqueda para el mismo número de
elementos. Lo que se busca con esta amplificación es devolver los estados negativos a un valor
positivo, y a la vez aumentar su amplitud, disminuyendo aśı la de las demás cadenas.

A.1.4. Iteración de Grover

Debido al carácter probabiĺıstico de la computación cuántica, no podemos estar seguros de
que vayamos a llegar al resultado esperado (un estado donde la función tenga valor 1). Por eso
el algoritmo aplica de manera recursiva al estado de superposición la transformación oráculo y
amplificación de amplitud. De esta manera, con O(

√
N) iteraciones, podemos estar seguros

de que al medir encontraremos el elemento buscado.

A.2. Variantes

Variante 1 Existe una variante de Grover que es menos conocida que el algoritmo general, que
se basa en la búsqueda sobre más de un elemento. El algoritmo se usa generalmente con
funciones cuyo valor es 1 para un único valor. Esta variante incluye la variable k que representa
el número de valores en el dominio de la función que tienen como resultado 1.
Esto hace que aumente la probabilidad de encontrar uno de entre todos estos valores, más

espećıficamente, con repetir la iteración O(

√
N

k
) veces obtenemos la misma probabilidad que

al buscar un solo elemento.
Esta variante tiene un inconveniente, que es que la mayoŕıa de las veces no conoceremos el valor
k (porque no conocemos la función a priori).

Variante 2 Existe otra variante de Grover que no se ha encontrado en la bibliograf́ıa, que se
basa en la búsqueda sobre un subconjunto.
Esto se consigue modificando la función de amplificación de amplitud para que no modifique
aquellos estados que no intervienen en la búsqueda.
Pero esto genera que aquellos estados sobre los que no se busque tendrán una probabilidad alta
de obtenerse como resultado, ya que no se aumenta su amplitud pero tampoco se reduce.

Esto se solventa usando un estado inicial de superposición donde las cadenas sobre las que
no se busque no se introduzcan como ı́ndice. Esto no se puede conseguir de una forma trivial,
ya que conseguir un estado de superposición es fácil usando puertas Hadamard, pero para

XXIV ANEXO A: ALGORITMO DE GROVER

Algoritmo de Diseño Matricial de Circuitos Cuánticos

conseguir un subconjunto de estados que tengan la misma amplitud solo se puede conseguir
mediante la creación de un circuito anterior que convierta el estado inicial en el estado deseado.
Si el subconjunto sobre el que se trabaja es fácil de dividir por sus qubits (por ejemplo solo
los valores pares o los impares, ya que solo se diferencian en el último qubit) entonces esta
transformación es trivial, bastaŕıa con no superponer dicho qubit. Pero en cualquier otro caso,
el estado de superposición se alcanza mediante entrelazamiento de distintos qubits, dif́ıcil de
alcanzar de forma manual, y conseguido de forma automática con un algoritmo de diseño de
circuitos mediante matriz.

A.3. Motivación

Este algoritmo se puede usar como un algoritmo de búsqueda sobre un conjunto desordenado
con una complejidad inalcanzable en un ordenador lógico (no paralelizado). Otra aplicación del
algoritmo es encontrar la función inversa a una función dada, ya que el algoritmo nos permite
averiguar para que valores la función tiene resultado 1 sin tener que recorrer todos los posibles
valores.
Existe el problema de que el oráculo es dif́ıcilmente implementable, ya que su utilidad reside en
que la función es desconocida. Por eso, en muchas ocasiones, si se quiere construir esta función es
necesario conocer previamente su resultado para todos los valores, lo que hace que el algoritmo
pierda su utilidad. Por eso su uso por ahora es muy limitado, aunque existen estudios sobre la
obtención de un oráculo sin necesidad de recorrer todos los posibles valores.

Este algoritmo ha motivado la idea principal de este Trabajo de Fin de Grado. Se conoce
matemáticamente la implementación y las matrices que dan su funcionalidad al algoritmo de
Grover (la matriz del oráculo y la matriz de la amplificación de amplitud) pero hasta ahora no
exist́ıa (o no se ha encontrado tras una exhaustiva investigación, ver caṕıtulo 2) una manera de
conseguir un circuito que implementase una matriz concreta.
Es cierto que exist́ıan medios más eficientes que el algoritmo propuesto en este trabajo para
generar los oráculos y la amplificación de amplitud, pero no existe la forma de generalizarlo para
cualquier matriz, lo cual es muy interesante a la hora de construir las variantes del algoritmo
descritas previamente, o cualquier otro algoritmo cuya matriz o matrices sean conocidas.

ANEXO A: ALGORITMO DE GROVER XXV

Algoritmo de Diseño Matricial de Circuitos Cuánticos

A.4. Demostraciones matemáticas sobre el algoritmo de Grover

Para llevar a cabo estas demostraciones, entre las cuales se encuentran demostraciones en-
contradas y cálculos propios, se ha buscado mucha información en diferentes puntos de la bi-
bliograf́ıa. [20][21]

A.4.1. Modelo básico

Este modelo representa una búsqueda de un elemento sobre una cadena de N elementos no
ordenados, siendo N = 2n y n el número de qubits del circuito.

La cadena a buscar se representa mediante el estado |ω〉 = (0, 0.., 1.., 0, 0)t.

El estado |s〉 = (1, 1.., 1, 1)t
1√
N

representa el estado de superposición de todos los qubits.

La transformación 〈Uω| representa el oráculo de Grover para el estado ω, representado en
la ecuación A.1.

La transformación 〈Ua| representa la amplifiación de amplitud, representado en la ecuación
A.2.

〈Uω| = 〈I| − 2 |ω〉 〈ω| (A.1)

〈Ua| = 2 |s〉 〈s| − 〈I| (A.2)

El estado |s′〉 representa el vector perpendicular a |ω〉.

∣∣s′〉 = (|s〉
√
N − |ω〉) 1√

N − 1
= (1, 1.., 0.., 1, 1)

1√
N − 1

(A.3)

A continuación se recogen los productos vectoriales entre estos estados. el producto 〈ω|s〉
representa la amplitud del estado |ω〉 sobre |s〉, lo que implica que 〈ω|s〉2 es la probabilidad de
medir |ω〉.

〈ω|s〉 =
1√
N

(A.4)

〈
ω
∣∣s′〉 = 0 (A.5)

〈
s
∣∣s′〉 =

√
N − 1√
N

(A.6)

Estas ecuaciones representan las transformaciones que se realizan sobre cada uno de los
estados, para más tarde realizar un cálculo de una primera iteración de Grover.

〈Uω|ω〉 = 〈I|ω〉 − 2 |ω〉 〈ω|ω〉 = |ω〉 − 2 |ω〉 = − |ω〉 (A.7)

XXVI ANEXO A: ALGORITMO DE GROVER

Algoritmo de Diseño Matricial de Circuitos Cuánticos

〈
Uω
∣∣s′〉 =

〈
I
∣∣s′〉− 2 |ω〉

〈
ω
∣∣s′〉 =

∣∣s′〉− 0 =
∣∣s′〉 (A.8)

〈Uω|s〉 = 〈I|s〉 − 2 |ω〉 〈ω|s〉 = |s〉 − 2 |ω〉 1√
N

= |s〉 − 2√
N
|ω〉 =

= (1, 1..,−1.., 1, 1)
1√
N

= |x0〉 (A.9)

〈Ua|ω〉 = 2 |s〉 〈s|ω〉 − 〈I|ω〉 =
2√
N
|s〉 − |ω〉 (A.10)

〈Ua|s〉 = 2 |s〉 〈s|s〉 − 〈I|s〉 = |s〉 (A.11)

A continuación se muestra como resultaŕıa la primera iteración del algoritmo (oráculo más
amplificador de amplitud) sobre el estado |s〉.

〈UaUω|s〉 = 〈Ua|x0〉 = 2 |s〉 〈s|x0〉−〈I|x0〉 = 2 |s〉 〈s|s〉− 4√
denN

|s〉 〈s|ω〉−〈I|s〉+ 2√
N
〈I|ω〉 =

=

(
1− 4

N

)
|s〉+

2√
N
|ω〉 = |y0〉 (A.12)

Como se calcula en A.13 según el resultado de A.12 podemos ver que la probabilidad de

obtener ω tras la primera iteración de Grover se ha aumentado de
1

N
a

3N − 4

N
√
N

.

〈y0|s〉 =
2

N
(A.13)

Se puede demostrar el funcionamiento del algoritmo de Grover mediante una visión geométri-
ca del mismo. En la figura A.1 se ve representados los estados |ω〉 y |s′〉 perpendiculares, y el
estado |s〉 entre medias. Sabemos que |s〉 tiene que encontrarse en el mismo plano que generan
los otros dos estados, aśı como cualquier punto intermedio |yi〉 resultado de una iteración del
algoritmo, ya que |s〉 puede representarse mediante una combinación lineal como se muestra en
la ecuación A.14, y las transformaciones que se llevan a cabo modifican a y b, lo que mantiene
|yi〉 en el mismo plano.

|s〉 = a |ω〉+ b
∣∣s′〉 =

1√
N
|ω〉+

√
N − 1√
N

∣∣s′〉 (A.14)

Como vemos en la figura A.1, el oráculo de la función genera una inversión del estado al
que se aplique con respecto al eje |s′〉, y la amplificación de amplitud genera una inversión con
respecto al eje |s〉. De esta forma, vemos que en cada iteración de grover, la amplitud del estado
|ω〉 aumenta en un ángulo θ, cuyo valor se calcula en la ecuación A.15.

cos(
θ

2
) =

〈
s
∣∣s′〉 =

√
N − 1√
N

⇒ sin(
θ

2
) =

√
1− N − 1

N
⇒ θ = 2sin−1(

1√
N

) (A.15)

Sabemos que para cada iteración el ángulo aumenta en θ y sabemos que la probabilidad
de medir |ω〉 es 1 menos la probabilidad de medir |s′〉, que sabemos que es cos2(φ) siendo

ANEXO A: ALGORITMO DE GROVER XXVII

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Figura A.1: Representación geométrica de una iteración de Grover[1].

φ = t
1

2
θ siendo t el número de iteraciones de Grover aplicadas. De esta forma sabemos que la

probabilidad de medir |ω〉 es sin2((t+
1

2
)θ).

Calculando la derivada de esta función con respecto a t (número de iteraciones) podemos
encontrar los máximos de dicha función, y el primero de ellos será aquel que nos de el mejor
resultado de Grover en el menor número de iteraciones. Como se calcula en la ecuación A.16

(sin2(t
1

2
θ))′ = 0⇔ 2sin((t+

1

2
)θ)cos((t+

1

2
)θ)θ = 0⇔

⇔ (t+
1

2
)θ = 0 ∨ (t+

1

2
)θ =

π

2
⇔ t =

−1

2
∨ t =

π

2θ
− 1

2
(A.16)

Como t debe ser un número positivo, sabemos que t =
π

2θ
− 1

2
, y despejando la ecuación en

A.18, de la que sacamos que la complejidad del algoritmo de Grover es O(
√
N).

limN→∞(sin−1(
1√
N

)) =
1√
N

(A.17)

t =
π

2θ
− 1

2
⇒ t =

π

4sin−1(
1√
N

)
− 1

2
⇒ t ≈ π

√
N − 2

4
(A.18)

A.4.2. Búsqueda de varios elementos

En este modelo del algoritmo, el estado ω es la suma de más de un estado buscado, de forma

que su probabilidad de ser resultado sobre el estado |s〉 es
k√
N

donde k es el número de estados

buscados.

XXVIII ANEXO A: ALGORITMO DE GROVER

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Realizando los cálculos análogos al modelo básico hayamos que θ = 2sin−1(

√
k√
N

), y por

tanto el número de iteraciones óptimo para encontrar una solución es O(

√
N√
k

).

El principal problema de este modelo es que comúnmente no se conocerá k de antemano, y el
algoritmo empeora la probabilidad de encontrar una solución si se realizan excesivas iteraciones.

A.4.3. Búsqueda sobre un subgrupo

En este modelo del algoritmo se utiliza una búsqueda sobre n qubits y sobre N elementos,
pero en este caso N no es necesariamente 2n. Eso quiere decir que el estado |ω〉 (buscado)
y el estado |s′〉 (estados no buscados) no generan (no se encuentra en su plano) el estado de
superposición |s〉 sobre todos los qubits.

Si no modificamos el oráculo ni el amplificador de amplitud, obtenemos que debemos realizar
el algoritmo un número de iteraciones O(

√
2n) en vez de O(

√
N);N < 2n, lo que no es una

solución eficiente.

Si hallamos el vector superposición |ss〉 solo para los elementos del subgrupo donde queremos
buscar, podremos generar un amplificador de amplitud de la forma 〈Uas| = |ss〉 〈ss| − I y
usamos como estado de entrada al algoritmo el estado |ss〉 tendremos una complejidad para
este algoritmo de O(

√
N).

La nueva amplificación de amplitud 〈Uas| y el estado |ss〉 se pueden alcanzar gracias al algoritmo
QCMD.

A.5. Matrices relativas al algoritmo de Grover

En esta sección vamos a ver las matrices relativas a las transformaciones relativas al algo-
ritmo. Estas matrices pueden generarse mediante circuitos descritos en el caṕıtulo ??.

A.5.1. Oráculo

La matriz oráculo de un algoritmo de Grover tendrá una forma como A.19 donde ai = −1
si en la posición i se encuentra un estado a buscar, o ai = 1 en otro caso.

 a0 · · · 0
...

. . .
...

0 · · · an−1

 (A.19)

A.5.2. Amplificación de amplitud

Esta matriz se genera con la multiplicación de los estados |s〉 〈s|, que genera una matriz con

todos sus valores
1√
N

. Y a esta matriz se le resta la matriz identidad, como se ve en la ecuación

A.20.

ANEXO A: ALGORITMO DE GROVER XXIX

Algoritmo de Diseño Matricial de Circuitos Cuánticos


1√
N
· · · 1√

N
...

. . .
...

1√
N
· · · 1√

N

−
 1 · · · 0

...
. . .

...
0 · · · 1

 =


1√
N
− 1 · · · 1√

N
...

. . .
...

1√
N

· · · 1√
N
− 1

 (A.20)

A.5.3. Variante de amplificación de amplitud

Para trabajar sobre un subgrupo de elementos, debemos modificar la matriz de amplifica-
ción de estado, de forma que aquellos estados con los que no trabajemos queden a 0 sus filas
y columnas salvo el elemento de la diagonal. La diagonal solución vendŕıa dada por la matriz
mostrada en A.21.

Para conseguir el estado de superposición sobre solo algunos elementos también se puede
usar el algoritmo QCMD para generar un circuito previo a la entrada del algoritmo.



1√
N
· · · 0 · · · 1√

N
...

. . . 0
. . .

...
0 0 0 0 0
...

. . . 0
. . .

...
1√
N
· · · 0 · · · 1√

N


−

 1 · · · 0
...

. . .
...

0 · · · 1

 =



1√
N
− 1 · · · 0 · · · 1√

N
...

. . . 0
. . .

...
0 0 −1 0 0
...

. . . 0
. . .

...
1√
N

· · · 0 · · · 1√
N
− 1


(A.21)

XXX ANEXO A: ALGORITMO DE GROVER

B
Giros básicos

En este anexo se recogen las demostraciones relativas a los giros básicos sobre la esfera de
Bloch. La computación cuántica aún no está estandarizada, por lo que los giros elegidos en
este trabajo no tienen porqué ser los existentes a nivel hardware en los distintos ordenadores
cuánticos.
Se ha elegido trabajar sobre estos giros debido a que son los más simples y más fáciles para
calcular con ellos.

B.1. Demostración de matrices de giro

En esta sección se demuestra que las matrices tomadas para estos giros son, en verdad, giros
sobre la esfera de bloch. En la tabla 3.II se muestran las matrices de los giros utilizados en el
trabajo, que representan giros sobre cada uno de los ejes de la esfera.

X(α) Y(β) Z(γ)[
cos(α2) sin(α2)i
sin(α2)i cos(α2)

] [
cos(β2) −sin(β2)

sin(β2) cos(β2)

] [
1 0
0 eiγ

]
Tabla B.I: Representación matricial de los giros básicos.

Giro Z

Puntos fijos En las ecuaciones B.1 y B.2 se ve demostrado cómo un giro Z no modifica
los estados |0〉 y |1〉, que se encuentran en los puntos donde el eje Z corta la esfera.

〈Z(α)|0〉 =

[
1 0
0 ε(α)

] [
1
0

]
=

[
1
0

]
= |0〉 (B.1)

〈Z(α)|1〉 =

[
1 0
0 ε(α)

] [
0
1

]
=

[
0

ε(α)

]
=

[
ε(−α) 0

0 ε(−α)

] [
0

ε(α)

]
=

[
0
1

]
= |1〉 (B.2)

XXXI

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Giros ejemplo En las ecuaciones B.3 y B.4 se muestran los estados a los que se modifican
el estado estándar |+〉. Si se contrasta en una esfera de Bloch se ve que el resultado es el esperado
para un giro en el eje Z.

〈Z(π)|+〉 =

[
1 0
0 −1

] [
1
1

]
1√
2

=

[
1
−1

]
1√
2

= |−〉 (B.3)

〈Z(π/2)|+〉 =

[
1 0
0 i

] [
1
1

]
1√
2

=

[
1
i

]
1√
2

= |i〉 (B.4)

Demostración general En la ecuación B.5 se demuestra de forma generalizada que esta
matriz representa un giro en el eje Z.

〈
Z(α)

∣∣∣∣(cos(ϕ/2)
sin(ϕ/2)ε(θ)

)〉
=

[
1 0
0 ε(α)

] [
cos(ϕ/2)

sin(ϕ/2)ε(θ)

]
=

[
cos(ϕ/2)

sin(ϕ/2)ε(θ + α)

]
(B.5)

Giro X

Puntos fijos En las ecuaciones B.6 y B.7 se ve demostrado cómo un giro X no modifica
los estados |+〉 y |−〉, que se encuentran en los puntos donde el eje X corta la esfera.

〈X(α)|+〉 =

[
cos(α/2) sin(α/2)i
sin(α/2)i cos(α/2)

] [
1
1

]
1√
2

=

[
cos(α/2) + sin(α/2)i
cos(α/2) + sin(α/2)i

]
1√
2

=

[
ε(α/2)
ε(α/2)

]
1√
2

= |+〉

(B.6)

〈X(α)|−〉 =

[
cos(α/2) sin(α/2)i
sin(α/2)i cos(α/2)

] [
1
−1

]
1√
2

=

[
cos(α/2)− sin(α/2)i
cos(α/2)− sin(α/2)i

]
1√
2

=

[
ε(−α/2)
ε(−α/2)

]
1√
2

= |−〉

(B.7)

Giros ejemplo En las ecuaciones B.8 y B.9 se muestran los estados a los que se modifican
el estado estándar |0〉. Si se contrasta en una esfera de Bloch se ve que el resultado es el esperado
para un giro en el eje X.

〈X(π)|0〉 =

[
cos(π/2) sin(π/2)i
sin(π/2)i cos(π/2)

] [
1
0

]
=

[
cos(π/2)
sin(π/2)i

]
=

[
0
i

]
= |1〉 (B.8)

〈X(π/2)|0〉 =

[
cos(π/4) sin(π/4)i
sin(π/4)i cos(π/4)

] [
1
0

]
=

[
cos(π/4)
sin(π/4)i

]
=

[
1
i

]
1√
2

= |i〉 (B.9)

Demostración general En la ecuación B.10 se demuestra representa un giro en el eje X
para cualquier estado en el plano Y Z (para cualquier otro estado, la modificación de los ángulos
no sigue una combinación lineal o patrón razonable).

〈
X(α)

∣∣∣∣(cos(ϕ/2)
sin(ϕ/2)i

)〉
=

[
cos(α/2) sin(α/2)i
sin(α/2)i cos(α/2)

] [
cos(ϕ/2)
sin(ϕ/2)i

]
=

=

[
cos(α/2)cos(ϕ/2)− sin(α/2)sin(ϕ/2)
sin(α/2)cos(ϕ/2)i+ cos(α/2)sin(ϕ/2)i

]
=

[
cos((α+ ϕ)/2)
cos((α+ ϕ)/2)i

]
= (B.10)

XXXII ANEXO B: GIROS BÁSICOS

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Giro Y

Puntos fijos En las ecuaciones B.11 y B.12 se ve demostrado cómo un giro Y no modifica
los estados |i〉 y |j〉, que se encuentran en los puntos donde el eje Y corta la esfera.

〈Y (α)|i〉 =

[
cos(α/2) −sin(α/2)
sin(α/2) cos(α/2)

] [
1
i

]
1√
2

=

[
cos(α/2)− sin(α/2)i
sin(α/2) + cos(α/2)i

]
1√
2

=

[
ε(−α/2)
iε(−α/2)

]
1√
2

= |i〉

(B.11)

〈Y (α)|j〉 =

[
cos(α/2) −sin(α/2)
sin(α/2) cos(α/2)

] [
1
−i

]
1√
2

=

[
cos(α/2) + sin(α/2)i
sin(α/2)− cos(α/2)i

]
1√
2

=

[
ε(α/2)
−iε(α/2)

]
1√
2

= |j〉

(B.12)

Giros ejemplo En las ecuaciones B.13 y B.14 se muestran los estados a los que se modi-
fican el estado estándar |0〉. Si se contrasta en una esfera de Bloch se ve que el resultado es el
esperado para un giro en el eje Y .

〈Y (π)|0〉 =

[
cos(π/2) −sin(π/2)
sin(π/2) cos(π/2)

] [
1
0

]
=

[
cos(π/2)
sin(π/2)

]
=

[
0
1

]
= |1〉 (B.13)

〈Y (π/2)|0〉 =

[
cos(π/4) −sin(π/4)
sin(π/4) cos(π/4)

] [
1
0

]
=

[
cos(π/4)
sin(π/4)

]
=

[
1
1

]
1√
2

= |+〉 (B.14)

Demostración general En la ecuación B.15 se demuestra representa un giro en el eje Y
para cualquier estado en el plano XZ (para cualquier otro estado, la modificación de los ángulos
no sigue una combinación lineal o patrón razonable).

〈
Y (α)

∣∣∣∣(cos(ϕ/2)
sin(ϕ/2)

)〉
=

[
cos(α/2) −sin(α/2)
sin(α/2) cos(α/2)

] [
cos(ϕ/2)
sin(ϕ/2)

]
=

=

[
cos(α/2)cos(ϕ/2)− sin(α/2)sin(ϕ/2)
sin(α/2)cos(ϕ/2) + cos(α/2)sin(ϕ/2)

]
=

[
cos((α+ ϕ)/2)
sin((α+ ϕ)/2)

]
(B.15)

ANEXO B: GIROS BÁSICOS XXXIII

Algoritmo de Diseño Matricial de Circuitos Cuánticos

B.2. Demostración de sobreyectividad

En esta sección vamos a demostrar que el uso de estos giros generan cualquier transformación
de giro sobre una esfera de Bloch.

Sobreyectividad sobre un estado En la ecuación B.17 se demuestra como, para ∀ estados
|x〉 , |y〉, ∃(Z(α), Y (β) tal que 〈Z(α)Y (β)|x〉 = |y〉. En este caso se han usado los giros Z e Y
pero la demostración se puede realizar también para cualquier concatenación.
El cálculo de β y ω se resuelve con complejas ecuaciones trigonométricas de grado 2 que se deja
para el lector.

|x〉 =

(
cos(ϕ/2)

sin(ϕ/2)ε(θ)

)
; |y〉 =

(
cos(φ/2)

sin(φ/2)ε(γ)

)
(B.16)

〈
Y (β)

∣∣∣∣(cos(ϕ/2)
sin(ϕ/2)ε(θ)

)〉
=

[
cos(φ/2)

sin(φ/2)ε(ω)

]
〈
Z(α)

∣∣∣∣(cos(φ/2)
sin(φ/2)ε(ω)

)〉
=

[
cos(φ/2)

sin(φ/2)ε(γ)

]
(B.17)

Sobreyectividad sobre un giro La ecuación B.18 demuestra que para ∀U transformación
de la esfera de Bloch, ∃A,B,C tal que ABC = U . Para esta demostración se usa la matriz de
giro B.19 que representa cualquie posible giro de la esfera de Bloch[22].

〈Z(y)Y (x)Z(z)| =
[

1 0
0 ε(z)

] [
cos(x/2) −sin(x/2)
sin(x/2) cos(x/2)

] [
1 0
0 ε(y)

]
=

=

[
cos(x/2) −sin(x/2)ε(y)

sin(x/2)ε(z) cos(x/2)ε(y + z)

]
(B.18)

[
cos(x/2) −sin(x/2)ε(y)

sin(x/2)ε(z) cos(x/2)ε(y + z)

]
(B.19)

B.3. Demostración de suma de ángulos con concatenación de
giros

En esta sección se demuestra como la concatenación de dos giros sobre el mismo eje resultan
en un mismo giro cuyo ángulo es la suma de los ángulos anteriores.

〈Z(α)Z(β)| =
[

1 0
0 ε(α)

] [
1 0
0 ε(β)

]
=

[
1 0
0 ε(α+ β)

]
(B.20)

〈X(α)X(β)| =
[
cos(α/2) sin(α/2)i
sin(α/2)i cos(α/2)

] [
cos(β/2) sin(β/2)i
sin(β/2)i cos(β/2)

]
=

=

[
cos(α/2)cos(β/2)− sin(α/2)sin(β/2) cos(α/2)sin(β/2)i+ sin(α/2)cos(β/2)i
sin(α/2)cos(β/2)i+ cos(α/2sin(β/2))i cos(α/2)cos(β/2)− sin(α/2)sin(β/2)

]
=

=

[
cos((α+ β)/2) sin((α+ β)/2)i
sin((α+ β)/2)i cos((α+ β)/2)

]
(B.21)

XXXIV ANEXO B: GIROS BÁSICOS

Algoritmo de Diseño Matricial de Circuitos Cuánticos

〈Y (α)Y (β)| =
[
cos(α/2) −sin(α/2)
sin(α/2) cos(α/2)

] [
cos(β/2) −sin(β/2)
sin(β/2) cos(β/2)

]
=

=

[
cos(α/2)cos(β/2)− sin(α/2)sin(β/2) −cos(α/2)sin(β/2)− sin(α/2)cos(β/2)
sin(α/2)cos(β/2) + cos(α/2sin(β/2)) cos(α/2)cos(β/2)− sin(α/2)sin(β/2)

]
=

=

[
cos((α+ β)/2) −sin((α+ β)/2)
sin((α+ β)/2) cos((α+ β)/2)

]
(B.22)

ANEXO B: GIROS BÁSICOS XXXV

C
Demostraciones matemáticas del diseño de QCMD

En este anexo se recogen las demostraciones relativas a los pasos de creación de las nuevas
puertas/circuitos. Se demuestran tanto la matriz solución de cada puerta, como la puerta in-
versión, y en algunos casos se demuestra expĺıcitamente la complejidad. Se ha prescindido de
las demostraciones triviales.

C.1. Giro condicionado

Demostramos que los diseños de cada una de las puertas propuestas generan la matriz
deseada, y la demostración de validez de las puertas inversas a cada giro.

Giro Z

Diseño Con respecto a la figura 4.3c demostramos la matriz solución.
1 0 0 0
0 1 0 0
0 0 ε(α/2) 0
0 0 0 ε(α/2)




1 0 0 0
0 ε(α/2) 0 0
0 0 1 0
0 0 0 ε(α/2)

 ∗


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 ε(−α/2) 0 0
0 0 1 0
0 0 0 ε(−α/2)




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

=


1 0 0 0
0 ε(α/2) 0 0
0 0 ε(α/2) 0
0 0 0 ε(α)




1 0 0 0
0 ε(−α/2) 0 0
0 0 ε(−α/2) 0
0 0 0 1

 =

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(α)

 (C.1)

XXXVII

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Inversa La demostración de la inversa de esta puerta es trivial. Z(α)Z(−α) = I

Giro Y Con respecto a la figura 4.3b demostramos la matriz solución.

Diseño


cos(α/2) −sin(α/2) 0 0
sin(α/2) cos(α/2) 0 0

0 0 cos(α/2) −sin(α/2)
0 0 sin(α/2) cos(α/2)




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ∗

cos(−α/2) −sin(−α/2) 0 0
sin(−α/2) cos(−α/2) 0 0

0 0 cos(−α/2) −sin(−α/2)
0 0 sin(−α/2) cos(−α/2)




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =

=


cos(α/2) −sin(α/2) 0 0
sin(α/2) cos(α/2) 0 0

0 0 cos(α/2) −sin(α/2)
0 0 sin(α/2) cos(α/2)

 ∗


cos(α/2) sin(α/2) 0 0
−sin(α/2) cos(α/2) 0 0

0 0 cos(α/2) −sin(α/2)
0 0 sin(α/2) cos(α/2)

 =

=


1 0 0 0
0 1 0 0
0 0 cos(α) −sin(α)
0 0 sin(α) cos(α)

 (C.2)

Inversa


1 0 0 0
0 1 0 0
0 0 cos(α) −sin(α)
0 0 sin(α) cos(α)




1 0 0 0
0 1 0 0
0 0 cos(−α) −sin(−α)
0 0 sin(−α) cos(−α)

 =

=


1 0 0 0
0 1 0 0
0 0 cos(α) −sin(α)
0 0 sin(α) cos(α)




1 0 0 0
0 1 0 0
0 0 cos(α) sin(α)
0 0 −sin(α) cos(α)

 =

=


1 0 0 0
0 1 0 0
0 0 cos(α)2 + sin(α)2 cos(α)sin(α)− cos(α)sin(α)
0 0 cos(α)sin(α)− cos(α)sin(α) cos(α)2 + sin(α)2

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(C.3)

Giro X Con respecto a la última figura de 4.3a demostramos la matriz solución.

XXXVIIIANEXO C: DEMOSTRACIONES MATEMÁTICAS DEL DISEÑO DE QCMD

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Diseño
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(π/2)




1 0 0 0
0 1 0 0
0 0 cos(α) −sin(α)
0 0 sin(α) cos(α)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(−π/2)

 =

=


1 0 0 0
0 1 0 0
0 0 cos(α) −sin(α)
0 0 sin(α)i cos(α)i




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −i

 =

=


1 0 0 0
0 1 0 0
0 0 cos(α) sin(α)i
0 0 sin(α)i cos(α)

 (C.4)

Inversa
1 0 0 0
0 1 0 0
0 0 cos(α) sin(α)i
0 0 sin(α)i cos(α)




1 0 0 0
0 1 0 0
0 0 cos(−α) −sin(−α)i
0 0 sin(−α)i cos(−α)

 =

=


1 0 0 0
0 1 0 0
0 0 cos(α) sin(α)i
0 0 sin(α)i cos(α)




1 0 0 0
0 1 0 0
0 0 cos(α) −sin(α)i
0 0 −sin(α)i cos(α)

 =

=


1 0 0 0
0 1 0 0
0 0 cos(α)2 − sin(α)2i2 cos(α)sin(α)i− cos(α)sin(α)i
0 0 cos(α)sin(α)i− cos(α)sin(α)i cos(α)2 − sin(α)2i2

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(C.5)

ANEXO C: DEMOSTRACIONES MATEMÁTICAS DEL DISEÑO DE QCMDXXXIX

Algoritmo de Diseño Matricial de Circuitos Cuánticos

C.2. Giro condicionado múltiple

Giro de 2 sources En la tabla C.I se ve una tabla con el resultado del circuito de la figura
4.7 para cada uno de los inputs lógicos.

qubit |00〉 |01〉 |10〉 |11〉
q0 ∅ ∅ ∅ ∅
q1 ∅ ∅ XX = ∅ XX = ∅

q2 = target ∅ U(α/2)U(−α/2) = ∅ U(−α/2)U(α/2) = ∅ U(α/2)U(α/2) = U(α)

Tabla C.I: Tabla de verdad para giro condicionado múltiple de 2 qubits

Giro de 3 sources En la tabla C.I se ve una tabla con el resultado del circuito de la figura
4.8 para cada uno de los inputs lógicos.

qubit |000〉 |001〉 |010〉 |011〉
q0 ∅ ∅ ∅ ∅
q1 XX = ∅ ∅ XX = ∅ ∅
q2 XX = ∅ XX = ∅ XX = ∅ XX = ∅

q3 = target ∅ ∅ ∅ U(α/2)U(−α/2) = ∅
qubit |100〉 |101〉 |110〉 |111〉
q0 ∅ ∅ ∅ ∅
q1 XXXX = ∅ XX = ∅ XXXX = ∅ XX = ∅
q2 XXXX = ∅ XXXX = ∅ XXXX = ∅ XXXX = ∅

q3 = target U(−α/2)U(α/2) = ∅ ∅ ∅ U(α/2)U(α/2) = U(α)

Tabla C.II: Tabla de verdad para giro condicionado múltiple de 3 qubits

Giro de n sources Por inducción se puede demostrar que cualquier puerta condicionada
múltiple con más de 3 sources, en verdad genera el giro esperado.
Esto se puede demostrar dividiendo el diseño de esta puerta en 3 apartados, uno por cada puerta
de menor número de sources.
En el primer apartado, el giro solo se activará si ∀i = 2...n qi = 1.
En el segundo apartado, solo se activará si q1 = 0 y ∀i = 2...n qi = 1, lo que hará que se deshaga
el giro anterior; o si q1 = 1 y ∀i = 2...n qi = 0.
En el tercer apartado, la puerta solo se activará si qn = 0 y ∀i = 2...n − 1 qi = 0 y q1 = 1
lo que deshaŕıa el giro del apartado 2 en el caso de que todos los qubits esten no activados; o
si ∀i = 1...n qi = 1 lo que generaŕıa un giro, que sumado al del apartado 1 sumaŕıan el giro
solución.

Complejidad En la ecuación C.11 se demuestra la complejidad total de la puerta de giro
múltiple dependiendo del número del número de qubits source.

Pm(s) = 2 + 2(s− 1) + 2(s− 2) + 3(Pm(s− 1)) = 4s− 4 + 3(Pm(s− 1)) (C.6)

Pm(1) = 5 (C.7)

Pm(2) = 2 + 3(Pm(1)) = 17 (C.8)

XL ANEXO C: DEMOSTRACIONES MATEMÁTICAS DEL DISEÑO DE QCMD

Algoritmo de Diseño Matricial de Circuitos Cuánticos

n∑
i=0

3i =
1

2
(3n+1 − 1) (C.9)

n∑
i=0

i3i =
3

4
(2n3n − 3n + 1) (C.10)

Pm(s) = 4 + 2(s− 1) + 2(s− 2) + 3(Pm(s− 1)) =

= 4(s− 1) + 3 · 4(s− 2) + 32Pm(s− 2) =

= 4
n∑
i=0

3is− 1− i =

= 2s3s−1 − 2s− 2 · 3s−2 + 2− 2s3s−2 + 6 · 3s−2 + 3s−2 − 3 + 3s−2Pm(2) =

= 22 · 3s−2 − 2s− 1 =

= O(3s) (C.11)

Diseño 2 Demostramos en C.12 la validez de la puerta según el diseño de la figura 4.11 para
n qubits source y n− 1 qubits auxiliares.

aux1 = s1ANDs2; aux2 = aux1ANDs3; auxi = auxi−1ANDsi+1∀i = 2, 3.., n− 1⇒
⇒ auxn−1 = ANDn

i=1(si) (C.12)

De esta forma podemos saber que la puerta con target auxn−1 solo se activará cuando todos los
sources estén activados.

ANEXO C: DEMOSTRACIONES MATEMÁTICAS DEL DISEÑO DE QCMD XLI

Algoritmo de Diseño Matricial de Circuitos Cuánticos

C.3. Toffoli

Demostración del diseño Por la ecuación C.13 demostramos la validez del diseño de la
puerta Toffoli vista en la figura 4.12b.



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 cos(π/2) −sin(π/2)
0 0 0 0 0 0 sin(π/2) cos(π/2)





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 ε(π)


=

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1


=

=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(C.13)

Inversa Demostrar que la puerta Toffoli es su propia inversa es un cálculo trivial.

C.4. Puerta de giro especial

Demostración del diseño Demostramos en C.14 que mediante el diseño figura 4.13 llegamos
a la matriz deseada (usando la puerta identidad condicionada).

Para x = fase(a), y = fase(b), θ = sin−1

(
|b|√

|a|2 + |b|2

)
= cos−1

(
|a|√

|a|2 + |b|2

)

[
ε(−x) 0

0 ε(−x)

] [
1 0
0 ε(y + x)

] [
cos(θ) −sin(θ)
sin(θ) cos(θ)

] [
1 0
0 ε(−y + x+ π)

]
=

=

[
ε(−x) 0

0 ε(y)

] [
cos(θ) sin(θ)ε(−y + x)
sin(θ) −cos(θ)ε(−y + x)

]
=

=

[
cos(θ)ε(−x) sin(θ)ε(−y)
sin(θ)ε(y) −cos(θ)ε(x)

]
=

[
a∗ b∗

b −a

]
1√

|a|2 + |b|2
(C.14)

XLII ANEXO C: DEMOSTRACIONES MATEMÁTICAS DEL DISEÑO DE QCMD

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Inversa Demostramos la validez de la inversión de esta puerta según la figura 4.5 en la ecua-
ción C.15[

a∗ b∗

b −a

] [
a b∗

b −a∗
]

1

|a|2 + |b|2
=

[
|a|2 + |b|2 a∗b∗ − a∗b∗
ab− ab |b|2 + |a|2

]
1

|a|2 + |b|2
=

[
1 0
0 1

]
(C.15)

C.5. Puerta de intercambio

Se demuestra el efecto de los circuitos mostrados en la figura 4.16 y para cualquier puerta
con una matriz como la mencionada en la sección 4.3, en las ecuación C.16.


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 =


a00 a01 a02 a03
a30 a31 a32 a33
a20 a21 a22 a23
a10 a11 a12 a13



a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


a00 a03 a02 a01
a10 a13 a12 a11
a20 a23 a22 a21
a30 a33 a32 a31




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


a00 a03 a02 a01
a30 a33 a32 a31
a20 a23 a22 a21
a10 a13 a12 a11




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 a b
0 0 c d




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


1 0 0 0
0 d c 0
0 b a 0
0 0 0 1

 (C.16)

C.6. Puerta AMS

La matriz solución a esta puerta se consigue de forma trivial.

Inversa Demostramos por la ecuacion C.17 la validez de la puerta inversión usando la puerta
inversión del giro especial.

R(f, 3)R(c, 2)S(a, b)R(c, 2)R(f, 3)R(f, 3)R(c, 2)S(a∗, b)R(c, 2)R(f, 3) =

= R(f, 3)R(c, 2)S(a, b)R(c, 2)IR(c, 2)S(a∗, b)R(c, 2)R(f, 3) =

= R(f, 3)R(c, 2)S(a, b)IS(a∗, b)R(c, 2)R(f, 3) =

= R(f, 3)R(c, 2)IR(c, 2)R(f, 3) = R(f, 3)IR(f, 3) = I (C.17)

C.7. Puerta diagonal

En las ecuaciones C.18, C.19 y C.20 se muestra la generación de cada paso de la puerta
diagonal, y en la ecuación C.21 se muestra la matriz solución de la concatenación de estas.

ANEXO C: DEMOSTRACIONES MATEMÁTICAS DEL DISEÑO DE QCMD XLIII

Algoritmo de Diseño Matricial de Circuitos Cuánticos


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(α)




0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 =


ε(α) 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 (C.18)


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(β)




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


1 0 0 0
0 ε(β) 0 0
0 0 1 0
0 0 0 1

 (C.19)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(γ)




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 1 0 0
0 0 ε(γ) 0
0 0 0 1

 (C.20)


ε(α) 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 ε(β) 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 ε(γ) 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(δ)

 =

=


ε(α) 0 0 0

0 ε(β) 0 0
0 0 ε(γ) 0
0 0 0 ε(δ)

 (C.21)

C.8. Puerta matricial

Las ecuaciones de C.22 hasta C.28 representan la división de una matriz en submatrices
unitarias de tamaño 2× 2, generables mediante una puerta AMS. De esta forma, sabemos que
concatenando en orden inverso cada una de las inversas de estas puertas obtendremos un circuito
cuya matriz solución sea la matriz principal.



a∗00√
|a00|2 + |a10|2

a∗10√
|a00|2 + |a10|2

0 0

a10√
|a00|2 + |a10|2

−a00√
|a00|2 + |a10|2

0 0

0 0 1 0
0 0 0 1



a00 a01 a02 a03
a10 a11 a12 a12
a20 a21 a22 a23
a30 a31 a32 a33

 =


a′00 a′01 a′02 a′03
0 a′11 a′12 a′12
a20 a21 a22 a23
a30 a31 a32 a33


(C.22)



a′∗00√
|a′00|2 + |a20|2

0
a∗20√

|a′00|2 + |a20|2
0

0 1 0 0
a20√

|a′00|2 + |a20|2
0

−a′00√
|a′00|2 + |a20|2

0

0 0 0 1



a′00 a′01 a′02 a′03
0 a′11 a′12 a′12
a20 a21 a22 a23
a30 a31 a32 a33

 =


a′′00 a′′01 a′′02 a′′03
0 a′11 a′12 a′12
0 a′21 a′22 a′23
a30 a31 a32 a33


(C.23)

XLIV ANEXO C: DEMOSTRACIONES MATEMÁTICAS DEL DISEÑO DE QCMD

Algoritmo de Diseño Matricial de Circuitos Cuánticos



a′′∗00√
|a′′00|2 + |a30|2

0 0
a∗30√

|a′′00|2 + |a30|2
0 1 0 0
0 0 1 0
a30√

|a′′00|2 + |a30|2
0 0

−a′′00√
|a′′00|2 + |a30|2



a′′00 a′′01 a′′02 a′′03
0 a′11 a′12 a′12
0 a′21 a′22 a′23
a30 a31 a32 a33

 =


1 0 0 0
0 a′11 a′12 a′12
0 a′21 a′22 a′23
0 a′31 a′32 a′33


(C.24)



1 0 0 0

0
a′∗11√

|a′11|2 + |a′21|2
a′∗21√

|a′11|2 + |a′21|2
0

0
a′21√

|a′11|2 + |a′21|2
−a′11√

|a′11|2 + |a′21|2
0

0 0 0 1




1 0 0 0
0 a′11 a′12 a′12
0 a′21 a′22 a′23
0 a′31 a′32 a′33

 =


1 0 0 0
0 a′′11 a′′12 a′′12
0 0 a′′22 a′′23
0 a′31 a′32 a′33


(C.25)



1 0 0 0

0
a′′∗11√

|a′′11|′2 + |a′31|2
0

a′∗31√
|a′′11|2 + |a′21|2

0 0 1 0

0
a′31√

|a′′11|2 + |a′31|2
0

−a′′11√
|a′′11|2 + |a′31|2




1 0 0 0
0 a′′11 a′′12 a′′12
0 0 a′′22 a′′23
0 a′31 a′32 a′33

 =


1 0 0 0
0 1 0 0
0 0 a′′22 a′′23
0 0 a′′32 a′′33


(C.26)



1 0 0 0
0 1 0 0

0 0
a′′∗22√

|a′′22|′2 + |a′′32|2
a′′∗32√

|a′′22|2 + |a′′32|2

0 0
a′′32√

|a′′22|2 + |a′′32|2
−a′′22√

|a′′22|2 + |a′′32|2




1 0 0 0
0 1 0 0
0 0 a′′22 a′′23
0 0 a′′32 a′′33

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(α)


(C.27)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(α)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(−α)

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (C.28)

C.9. Uso del diseño 2

Se demuestra en la ecuación C.31 que el uso del diseño 2 solo es eficiente a partir de un
número de qubits, debido al alto coste de usar puertas Toffoli.

Pm(d1)(s) = 4(s− 1) + 3Pm(s− 1) ' 22 · 3s−2 (C.29)

Pm(d2)(s) = 2sPt(2) = 4sPm(d1)(2) ' 68s (C.30)

Pm(d2)(s) < Pm(d1)(s)⇔ 68s < 22 · 3s−2 ⇔ s > 4,369 (C.31)

ANEXO C: DEMOSTRACIONES MATEMÁTICAS DEL DISEÑO DE QCMD XLV

Algoritmo de Diseño Matricial de Circuitos Cuánticos

Demostramos aśı que, sin un diseño más óptimo de una puerta Toffoli, por debajo de 5 qubits
es más eficiente el diseño 1 para una puerta de giro condicionada múltiple, y por lo tanto, para
cualquiera de las puertas superiores.

XLVI ANEXO C: DEMOSTRACIONES MATEMÁTICAS DEL DISEÑO DE QCMD

D
Representaciones de giros en esfera de Bloch

D.1. Representación de un giro H

En la figura D.1 se ve representado un giro H. Cada estado representado se transforma en
el estado con su mismo color.

Figura D.1: Giro H.

XLVII

Algoritmo de Diseño Matricial de Circuitos Cuánticos

D.2. Representación de un giro condicionado

D.2.1. Giro con target inactivo

Aqúı se representa el caso de un giro condicionado sobre el eje Y de ángulo α en el caso
en que el source no esté activo, por lo que se generará un giro en una dirección, y el mismo en
dirección contraria. Se puede ver como esta concatenación deja todos los estados sin modificar.

α -α

Figura D.2: Representación de concatenación de giros dos giros en el eje Y opuestos.

XLVIII ANEXO D: REPRESENTACIONES DE GIROS EN ESFERA DE BLOCH

Algoritmo de Diseño Matricial de Circuitos Cuánticos

D.2.2. Giro con target activo

Aqúı se representa el caso de un giro condicionado sobre el eje Y de ángulo α en el caso en
que el source esté activo, por lo que se generará un giro α sobre Y , un giro de ángulo π sobre
el eje Z, un giro sobre Y de ángulo −α y por último otro giro de π sobre Z. Se puede ver como
el estado se ha modificado un ángulo α sobre el eje Y .

α π

-α π

Figura D.3: Representación de concatenación de dos giros en el eje Y opuestos con giros Z
intercalados.

ANEXO D: REPRESENTACIONES DE GIROS EN ESFERA DE BLOCH XLIX

E
Ejemplo de funcionamiento del algoritmo QCMD

En este anexo se explica el funcionamiento de esta puerta mediante un pequeño ejemplo de
un circuito de 2 qubits. En la ecuación E.1 se ve un ejemplo de matriz que queremos construir
M . La demostración de que dicha matriz es unitaria (construible por un ordenador cuántico)
se puede ver en la ecuación E.2.

Al dividir esta matriz en submatrices, empezamos por el elemento más arriba a la izquierda
de la matriz, que se ve en negrita en la figura E.1. La submatriz que queremos generar se mues-
tra en la ecuación E.3, denominada V0. Vemos en la ecuación E.4 como esta matriz transforma
nuestra matriz destino en una matriz similar pero con un 0 en el valor que estabamos modifi-
cando.

Siguiendo con el mismo procedimiento, buscamos la siguiente matriz, que será la mostrada
en la ecuación E.5, denominada V1. Vemos en la ecuación E.6 como hemos llegado a una matriz
identidad.

Por último vemos que queda un valor dentro de la diagonal que no se ha modificado. Para
esto usamos la matriz V2 E.7 y obtenemos la matriz identidad según la ecuación E.8.

De esta forma, sabemos que la concatenación de las matrices V ∗0 V
∗
1 V
∗
2 dará lugar a la matriz

M . Esto se demuestra en la ecuación E.9.

Generando las puertas AMS con los parámetros necesarios y concatenándolas podemos crear
un circuito que se ajuste a la matriz M . De esta forma 〈U0| será una puerta AMS con paráme-

tros: fila=1, columna=0, a=
−i√

2
, b=

1√
2

; cuya matrix es V †0 . Y la puerta 〈U1| será una puerta

AMS con parámetros: fila=1, columna=0, a=

√
2√
3

, b=
1√
3

; cuya matrix es V †1 .

Pueden existir valores en la diagonal que no se hayan modificado por estas puertas, como
por ejemplo el i de abajo derecha de M . Para esto se genera al final una matriz diagonal que
transforma estos valores a una matriz identidad. En el caso de la matriz M , la única puerta
necesaria para esta matriz diagonal será la referenete al último valor, que se puede hacer me-

LI

Algoritmo de Diseño Matricial de Circuitos Cuánticos

diante un giro condicionado múltiple sobre Z de ángulo π, o la puerta 〈U2| con matriz V †2 .

Por lo tanto concluimos que el circuito 〈U0U1U2| mostrado en la figura E.1 (a0 =
i√
2

,

b0 =
1√
2

, a1 =

√
2√
3

, b1 =
1√
3

) generan la matriz M buscada. Este proceso se puede

generalizar a cualquier matriz unitaria.

Figura E.1: Diseño de puerta de ajuste matricial para 2 qubits.

M =



i√
3

1√
2

i√
6

0

1√
3

i√
2

1√
6

0

1√
3

0
−
√

2√
3

0

0 0 0 i


(E.1)

MM∗ =



i√
3

1√
2

i√
6

0

1√
3

i√
2

1√
6

0

1√
3

0
−
√

2√
3

0

0 0 0 i





−i√
3

1√
3

1√
3

0

1√
2

−i√
2

0 0

−i√
6

1√
6

−
√

2√
3

0

0 0 0 i


=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 = I (E.2)

V0 =



−i√
3√
2√
3

1√
3√
2√
3

0 0

1√
3√
2√
3

−i√
3√
2√
3

0 0

0 0 1 0
0 0 0 1


=


−i√

2

1√
2

0 0

1√
2

−i√
2

0 0

0 0 1 0
0 0 0 1

 (E.3)

V0M =


−i√

2

1√
2

0 0

1√
2

−i√
2

0 0

0 0 1 0
0 0 0 1





i√
3

1√
2

i√
6

0

1√
3

i√
2

1√
6

0

1√
3

0
−
√

2√
3

0

0 0 0 i


=


2√
6

0
1√
3

0

0 1 0 0
1√
3

0
−2√

6
0

0 0 0 i

 = M1 (E.4)

LII ANEXO E: EJEMPLO DE FUNCIONAMIENTO DEL ALGORITMO QCMD

Algoritmo de Diseño Matricial de Circuitos Cuánticos

V1 =



2√
6

1
0

1√
3

1
0

0 1 0 0
1√
3

1
0
− 2√

6

1
0

0 0 0 1

 =



√
2√
3

0
1√
3

0

0 1 0 0

1√
3

0
−
√

2√
3

0

0 0 0 1

 (E.5)

V1M1 =



√
2√
3

0
1√
3

0

0 1 0 0

1√
3

0
−
√

2√
3

0

0 0 0 1




2√
6

0
−i√

3
0

0 1 0 0
i√
3

0
2√
6

0

0 0 0 i

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 = M2 (E.6)

V2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(−π/2)

 (E.7)

V2M2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(−π/2)




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = M3 = I (E.8)

V ∗0 V
∗
1 V
∗
2 =


i√
2

1√
2

0 0

1√
2

i√
2

0 0

0 0 1 0
0 0 0 1





√
2√
3

0
1√
3

0

0 1 0 0

1√
3

0
−
√

2√
3

0

0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ε(π/2)





1√
3

1√
2

i√
6

0

1√
3

−1√
2

i√
6

0

i√
3

0
−
√

2√
3

0

0 0 0 i


= M

(E.9)

ANEXO E: EJEMPLO DE FUNCIONAMIENTO DEL ALGORITMO QCMD LIII

Algoritmo de Diseño Matricial de Circuitos Cuánticos

LIV ANEXO E: EJEMPLO DE FUNCIONAMIENTO DEL ALGORITMO QCMD

F
Pruebas del algoritmo QCMD

F.1. Pruebas en el simulador

Aqúı se recoge el código de salida del programa explicado en la sección 5.2 donde se ha usado
el simulador de la API de Python QISKit para comprobar el funcionamiento de las distintas
puertas implementadas. En el código F.1 se recoge el comando utilizado para lanzar dichos test,
y en el código F.2 se recoge la salida por pantalla de dicho script, donde se ven los pasos del
test y las soluciones obtenidas y simuladas. Recodar que el número de puertas calculado en la
sección 4.4 era para un diseño en concreto, y esta implementación sigue determinadas decisiones
de diseño que pueden hacer que estos valores cambien.

1 python aqp mat r i x t e s t . py −n 3 − i 9 −v −a > t e s t . out

Listing F.1: Comando de ejecución

1

2 Assembler wr i t t en with 9777 gate s
3

4 Generated matrix
5 [[−0.75+0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j

]
6 [0.25 −0. j −0.75+0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j]
7 [0.25 −0. j 0.25 −0. j −0.75+0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j]
8 [0.25 −0. j 0.25 −0. j 0.25 −0. j −0.75+0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j]
9 [0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j −0.75+0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j]

10 [0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j −0.75+0. j 0.25 −0. j 0.25 −0. j]
11 [0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j −0.75+0. j 0.25 −0. j]
12 [0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j −0.75+0. j

]]
13

14 Simulated matrix
15 [[−0.75+0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j

]
16 [0.25 −0. j −0.75+0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j]
17 [0.25 −0. j 0.25 −0. j −0.75+0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j]
18 [0.25 −0. j 0.25 −0. j 0.25 −0. j −0.75+0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j]
19 [0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j −0.75+0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j]
20 [0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j −0.75+0. j 0.25 −0. j 0.25 −0. j]
21 [0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j −0.75+0. j 0.25 −0. j]
22 [0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j 0.25 −0. j −0.75+0. j

]]

LV

Algoritmo de Diseño Matricial de Circuitos Cuánticos

23

24 CLOSE

Listing F.2: Salida por pantalla

F.2. Pruebas en el ordenador

Aqúı se recogen las distintas pruebas que se han realizado contra el ordenador cuántico real
IBM-Q a través del servicio web proporrcionado por QISKit.

Podemos apreciar, como los circuitos con 2 qubits generan mejores resultados que aquellos
con 3 qubits. Esto en general se debe a que una puerta para 3 qubits requiere de una profundidad
mucho mayor que para 2 qubits. También observamos que para las puertas de intercambio,
aquellas que modifican menos qubits, y por tanto requieren de menos puertas toffoli F.6 obtiene
mejores resultados que aquellas que modifican más de un qubit F.9.


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 (F.1)

Figura F.1: Resultados del ordenador cuántico para un circuito de 2 qubits I.

LVI ANEXO F: PRUEBAS DEL ALGORITMO QCMD

Algoritmo de Diseño Matricial de Circuitos Cuánticos


1√
2

1√
2

0 0

1√
2
− 1√

2
0 0

0 0 1 0
0 0 0 1


(F.2)

Figura F.2: Resultados del ordenador cuántico para un circuito de 2 qubits II.


1√
2

0
1√
2

0

0 1 0 0
1√
2

0 − 1√
2

0

0 0 0 1


(F.3)

Figura F.3: Resultados del ordenador cuántico para un circuito de 2 qubits III.


1√
2

0 0
1√
2

0 1 0 0
0 0 1 0
1√
2

0 0 − 1√
2


(F.4)

Figura F.4: Resultados del ordenador cuántico para un circuito de 2 qubits IV.

ANEXO F: PRUEBAS DEL ALGORITMO QCMD LVII

Algoritmo de Diseño Matricial de Circuitos Cuánticos



1√
2

0 0 0 0 0 0
1√
2

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1√
2

0 0 0 0 0 0 − 1√
2


(F.5)

Figura F.5: Resultados del ordenador cuántico para un circuito de 3 qubits I.



0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(F.6)

Figura F.6: Resultados del ordenador cuántico para un circuito de 3 qubits II.

LVIII ANEXO F: PRUEBAS DEL ALGORITMO QCMD

Algoritmo de Diseño Matricial de Circuitos Cuánticos



0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(F.7)

Figura F.7: Resultados del ordenador cuántico para un circuito de 3 qubits III.



0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(F.8)

Figura F.8: Resultados del ordenador cuántico para un circuito de 3 qubits IV.

ANEXO F: PRUEBAS DEL ALGORITMO QCMD LIX

Algoritmo de Diseño Matricial de Circuitos Cuánticos



0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0


(F.9)

Figura F.9: Resultados del ordenador cuántico para un circuito de 3 qubits V.

LX ANEXO F: PRUEBAS DEL ALGORITMO QCMD

	Índice de figuras
	Índice de tablas
	Definiciones
	Glosario
	Introducción
	Motivación
	Objetivos
	Contenido

	Estado del arte
	Ordenador cuántico
	Algoritmos cuánticos
	Diseño de circuitos
	Herramientas

	Introducción a la computación cuántica
	Mecánica cuántica
	Ordenador cuántico
	Esfera de Bloch
	Notación matemática e interpretación matricial
	Puertas cuánticas
	Circuitos y simuladores

	Algoritmo de Diseño Matricial de Circuitos Cuánticos
	Introducción al algoritmo
	Idea principal
	Motivación
	Primera aproximación

	Descripción del algoritmo
	Fundamento teórico

	Diseño
	Resumen de diseño
	Puertas básicas
	Puertas compuestas
	Puerta de giro condicionado
	Puerta de giro condicionado múltiple
	Puerta Toffoli
	Puerta de giro especial
	Puerta de intercambio
	Puerta de ajuste matricial simple

	Circuitos de ajuste a una matriz
	Puerta de ajuste diagonal
	Puerta de ajuste matricial

	Resultado del algoritmo

	Complejidad total
	Mejoras

	Implementación empírica del algoritmo
	Implementación y simulador propio
	Diseño
	Complejidad
	Interfaz
	Otros Posibles Diseños

	Pruebas con IBM-Q
	Simulador
	Ordenador

	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro

	Bibliografía
	Anexos
	Algoritmo de Grover
	Flujo
	Estado de superposición
	Oráculo
	Amplificación de Amplitud
	Iteración de Grover

	Variantes
	Motivación
	Demostraciones matemáticas sobre el algoritmo de Grover
	Modelo básico
	Búsqueda de varios elementos
	Búsqueda sobre un subgrupo

	Matrices relativas al algoritmo de Grover
	Oráculo
	Amplificación de amplitud
	Variante de amplificación de amplitud

	Giros básicos
	Demostración de matrices de giro
	Demostración de sobreyectividad
	Demostración de suma de ángulos con concatenación de giros

	Demostraciones matemáticas del diseño de QCMD
	Giro condicionado
	Giro condicionado múltiple
	Toffoli
	Puerta de giro especial
	Puerta de intercambio
	Puerta AMS
	Puerta diagonal
	Puerta matricial
	Uso del diseño 2

	Representaciones de giros en esfera de Bloch
	Representación de un giro H
	Representación de un giro condicionado
	Giro con target inactivo
	Giro con target activo

	Ejemplo de funcionamiento del algoritmo QCMD
	Pruebas del algoritmo QCMD
	Pruebas en el simulador
	Pruebas en el ordenador

