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Resumen

Resumen

Este Trabajo de Fin de Grado tiene como objetivo el estudio de la computacion cuantica y
el desarrollo de herramientas y algoritmos basados en ella.

La computacién cudntica es un paradigma computacional en la actualidad muy poco desa-
rrollado, que basa su funcionamiento en fenémenos cuanticos, lo que permite la implementacion
de nuevos algoritmos con potencia de calculo paralelizable mucho mayores que los obtenibles
por ordenadores actuales.

El trabajo desarrollado comienza por el estudio y entendimiento del funcionamiento de un
ordenador cuantico y sus posibilidades de uso. Este tipo de ordenadores y este nuevo paradigma
conllevan un alto conocimiento matemaético, asi como conocimientos basicos sobre fisica cuanti-
ca y computacién.

Una vez entendidas las bases de la computacién cudntica, se estudia en profundidad ciertos
algoritmos cudnticos, en particular, el algoritmo de Grover. Este es un algoritmo de biisqueda
sobre un conjunto finito de elementos, con una complejidad computacional no alcanzable por
un ordenador 1égico, pero con dificultades a la hora de ser programado en un ordenador cudntico.

Como enfoque principal de este trabajo se encuentra la creacién de un algoritmo légico
generalizable que automatiza la creacién de circuitos cuanticos.

Se ha disenado un nuevo algoritmo logico que genera una concatenacién de transformaciones
realizables por un ordenador cuantico para generar circuitos de més alto nivel que los actual-
mente existentes. En concreto, el algoritmo propuesto es capaz de generar un circuito cuantico
cuyo resultado equivalga a una matriz cualquiera dada.

Este algoritmo se ha demostrado mateméaticamente a lo largo del trabajo y se ha implemen-
tado en un ordenador légico, mediante el cual se ha probado su funcionalidad ejecutandolo para
diversos casos de prueba sobre un simulador cuantico y sobre un ordenador cuantico real.

Palabras clave

Ordenador cuantico, computacién cudntica, qubit, puerta cuantica, algoritmo cuéntico, al-
goritmo de Grover, circuito cuantico.

111



Algoritmo de Diserio Matricial de Circuitos Cudnticos

Abstract

This End-of-Degree Project aims to study quantum computing and the development of tools
and algorithms in it.

Quantum computing is a computational paradigm that is currently little developed, which
bases its operation on quantum phenomena. This allows the implementation of new algorithms
with parallelizable computing power greater than any current computer.

The work developed starts with the study of quantum computing and its functionality and
usability. This kind of computers and this new paradigm require a high knowledge of maths, or
basic knowledge about quantum physics and computer science.

Once knowing the basis of quantum computing, the study focuses on quantum algorithms
and Grover’s algorithm in particular. This is a search algorithm over a non sorted set of ele-
ments with lower coplexity than any possible logical program. But it has its difficulties when it
needs to be implemented in a real quantum computer.

The main focus of this work is the creation of a generalizable logical algorithm that automa-
tes the creation of quantum circuits. A new logical algorithm has been designed that generates a
concatenation of quantum transformations reliazable by a quantum computer to generate circuits
of higher level than those currently existing. In particular, the proposed algorithm is capable of
generating a quantum circuit which results to be equivalent to any given matriz.

This algorithm has been demonstrated mathematically throughout the work and has been
implemented in a logical computer, through which its efficiency has been proven with a quantum
stmulator and with a real quantum computer.

Key words

Quantum computer, quantum computing, qubit, quantum gate, quantum algorithm, Grover’s
algorithm, quantum circuit.
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Definiciones

Algoritmo cuantico: Conjunto tedrico de transformaciones ordenadas sobre uno o varios
qubits para obtener un resultado concreto.

Circuito cuantico: Concatenacion de puertas cudnticas que afectan a uno o varios qubits.

Esfera de Bloch: Representacion geométrica de una esfera de radio 1, en la cual puede
representarse el comportamiento tedrico de un qubit.

Estado cuantico: Estado en el que se encuentra un qubit (es tinico en tiempo fijo) y del
que depende el valor real del qubit al medirlo.

Estado inicial basico: Estado de menor energia de los qubits en un ordenador cuantico
o estado de los qubits al iniciar un programa cuantico. Se representa mediante el estado
|0...,0).

Ordenador cuantico: Maquina capaz de llevar entrelazamientos y transformaciones so-
bre qubits y capaz de medir los mismos.

Profundidad: Niumero de puertas cuanticas bésicas que contiene un circuito cudntico.

Programa cuantico: Conjunto ordenado de transformaciones sobre uno o varios qubits
(similar a un circuito cuéntico).

Puerta cuantica: Transformacién sobre uno o varios qubits.

Puerta cuantica basica: Puerta que se da por hecho estard implementada fisicamente
sobre un ordenador cuantico.

QCMD: Quantum Circuit Matricial Design algorithm o Algoritmo de Disefio Matricial
de Circuitos Cuénticos.

Qubit: Unidad elemental de la computacién cudntica con un valor probabilistico medible
entre 0 o 1. En castellano se denomina Cubit, aunque se considera aceptado Qubit y es el
término utilizado en este documento.
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(zlosario matematico

(¢|Y): Notacién de Dirac. (¢| representa una transformacion y |¢) un estado cuédntico.
e(a): e(a) = e,

O(): Notacién O grande o de cota superior asintdtica.
P,: Representa la profundidad de la puerta x.

U(«): Giro de un qubit sobre el eje U de dangulo a.

Vectores y matrices: Los vectores se ha representado contenidos en paréntesis () y las
matrices contenidas en corchetes [|.
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Introduccion

1.1. Motivacion

La computacién cudntica podria considerarse a dia de hoy una de las mas plausibles apli-
caciones de las teorfas fisicas mas modernas y un campo con un esfuerzo en investigaciéon que
crece dia a dia. Este paradigma de computacién casi recién nacido se encuentra en un estado
muy bésico, donde la programacién y la fisica se enfrentan a problemas fuera de nuestro enten-
dimiento, en una carrera por conseguir el primer ordenador cuantico funcional, capaz de realizar
calculos en cuestion de segundos que antes se crefan imposibles por el tiempo que necesitaban.

La motivacién principal que llevo a elegir este campo de estudio fue la posibilidad de contri-
buir en un paradigma de computacion, hasta la fecha casi inicamente estudiado por los fisicos.
Parece una rama de estudio con infinidad de posibilidades, ya que todo es nuevo y en constante
crecimiento; asi como un reto personal ante la idea de enfrentarse a fenémenos fisicos que nos
rodean y que escapan a nuestra razon.

La idea que persigue la computacién cudntica es la paralelizacion perfecta de célculos o al-
goritmos muy especificos, los cuales son aplicables a la resolucién de problemas tan particulares
como importantes, como la famosa factorizacién de niimeros primos, lo que conllevaria un
colapso de la criptografia actual usada en internet. Pero esta tecnologia ain no se ha desarro-
llado lo suficiente como para permitir este tipo de calculos, debido a limitaciones del hardware
actual, asi como del software y la teoria y algoritmia que la rodea.

La intencién de este trabajo es ayudar a resolver ciertos aspectos relativos al software de
este paradigma de computacién desde un punto de vista tedrico pero aplicable, para intentar
dar un uso méas simple y extendido a dicha tecnologia.

1.2. Objetivos

La idea inicial de este Trabajo de Fin de Grado es, partiendo del estudio del algoritmo
de Grover, algoritmo de bisqueda en computacién cuantica, buscar aplicaciones para dicho
algoritmo o disenar nuevos algoritmos basados en el ordenador cuantico.
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El descubrimiento de que la mayor parte de la teoria relativa a este algoritmo ya estaba
desarrollada y era muy dificil innovar sobre ello, hizo reconducir la investigacion a la imple-
mentacion desde un ordenador real de un algoritmo genérico para construir cualquier algoritmo
cuantico.

Andlogamente a la computacién légica, los ordenadores cuanticos funcionan mediante qubits
(en espanol cubit, es el andlogo a un bit 16gico. En este documento se usard la terminologia
inglesa) y puertas cudnticas (en vez de puertas légicas). El objetivo principal de este trabajo es
el diseno de un nuevo algoritmo légico que sea capaz de generar automaticamente las puertas
cudnticas necesarias para crear cualquier programa o circuito cuantico, que implemente un
determinado algoritmo o célculo sobre un computador cuantico.

1.3. Contenido

Esta memoria estd dividida en los siguientes capitulos:

= Estado del arte: En este capitulo se hard una breve introduccién al estado en el que
actualmente se encuentra la computacién cuantica, asi como a algoritmos e investigaciones
sobre el campo.

= Introduccion a la computacién cuantica: En este capitulo se hace una breve introduc-
cién a los conocimientos bésicos matematicos, fisicos y computacionales necesarios para
poder entender la computacién cuantica, su utilidad, importancia y estado actual.

s Algoritmo de Diseno Matricial de Circuitos Cuanticos: En este capitulo se expli-
card paso a paso el funcionamiento del algoritmo disenado, y se incluirdn demostraciones
matematicas de su funcionamiento.

= Implementaciéon empirica del algoritmo: En este capitulo se explica de forma resumi-
da la implementacién propia de este algoritmo y las pruebas realizadas sobre el simulador
y el ordenador cuantico de IBM.

= Conclusiones y trabajo futuro: Por ultimo, en este capitulo se recogen las diferentes
conclusiones extraidas y se identifican posibles puntos de mejora y el trabajo futuro relativo
a este proyecto.

2 SECCION 1: INTRODUCCION



Estado del arte

2.1. Ordenador cuantico

La computacion cudntica es un paradigma de programacién que basa su funcionamiento
en la idea abstracta de Mdquina de Turing Cudntica, la cual es capaz de realizar cierto tipo
de calculos de forma mucho més veloz que un ordenador convencional basado en fundamentos
electromagnéticos.

Para llevar a cabo este tipo de cédlculos es necesario un tipo de maquina denominada ordenador
cudntico, el cual explota los fendmenos relativos a la fisica cudntica. Actualmente estos efectos
solo son perceptibles en particulas subatémicas y bajo condiciones extremas como altos gastos
de energia o temperaturas cercanas al 0 absoluto (en la actualidad se usan entornos a menos
temperatura que el espacio abierto).

Todo esto ha generado la conocida como carrera por la supremacia cudntica. Esto es una com-
peticion por parte de diversas empresas o instituciones por conseguir un ordenador cudntico
de un tamano (en numero de qubits y tasa de error) capaz de realizar cdlculos que escapan a
cualquier intento de simulacién por parte de un ordenador actuall2].

En esta carrera se pueden encontrar grandes gigantes informaticos como Intel, que anunci6
a principios del ano 2018 su intencién de construir un ordenador cudntico de 49 qubits, o
Google, que alrededor de las mismas fechas, anuncié su intencién de disponer durante este ano
de un ordenador cuéntico operativo de 72 qubits[3]. Existen también empresas como D-Wave,
centrada en el diseno y construccién de computadoras cudnticas[4], con colaboraciones con la
Nasa, Google y USRA entre otros. Cabe destacar entre estas empresas a IBM, la cual cuenta
con un servicio web mediante el cual se puede hacer uso de sus ordenadores cudnticos de manera
publica y gratuita. Este servicio web se ha utilizado en este trabajo para probar empiricamente
el resultado del algoritmo implementado.

2.2. Algoritmos cuanticos

Los algoritmos cuanticos son algoritmos disenados para ser ejecutados en un ordenador
cudntico, y de esta forma aprovechar los fenémenos cuanticos para realizar calculos en segundos
que en ordenadores convencionales llevarian millones de anos. Existen gran cantidad de algorit-
mos tedricos [5], como pueden ser el algoritmo de Grover, un algoritmo de bisqueda sobre

3
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una secuencia desordenada, o el algoritmo de Shor que es capaz de factorizar un niimero en
factores primos.

En general, los algoritmos cuanticos se usan en campos orientados a la inteligencia artifi-
cial6] y a la simulacién de fenémenos cuanticos. Por ejemplo, en la actualidad son usados para
la simulacién de comportamientos de ciertos compuestos quimicos.

2.3. Diseno de circuitos

Este Trabajo de Fin de Grado se ha centrado en el disefio de un algoritmo orientado a

la computacién cuantica mediante el cual se genera automaticamente un circuito de puertas
cudnticas que implementa cualquier algoritmo cuéntico con matriz conocida. Esto en la actua-
lidad se lleva a cabo de manera manual por los programadores cuanticos.
Se ha investigado de forma exhaustiva para encontrar un algoritmo o proceso que realizase
esta funcién. Se ha investigado en libros [7] y articulos y se ha consultado mediante internet
en distintas paginas y foros, como por ejemplo en Slack - QISKit[§], foro online formado por
profesionales y estudiantes del campo de la computacion cudntica que usan la API de Python
QISKit desarrollada por IBM para el uso de su ordenador cudntico de forma online. Tras estas
investigaciones no se ha encontrado un algoritmo genérico (para cualquier nimero de qubits)
que implemente esta funcion.

Lo mas cercano a este algoritmo que se ha podido encontrar ha sido un articulo de investi-
gacién donde se explica cémo implementar ciertos algoritmos para una méaquina de 5 qubits[9]
y que hace referencia a la descomposicién de Schmidt[I0], operacién matematica que sirve para
descomponer una matriz generada por un producto tensorial. Pero este método encuentra una
limitacién a la hora de resolver grandes sistemas de ecuaciones cuando se aumenta el nimero
de qubits del ordenador.

2.4. Herramientas

Para la implementacion del algoritmo disenado, se ha usado el lenguaje de programacién
Python 3.5 :: Anaconda 4.2 y librerias estandar del mismo, sobre un entorno Ubuntu 16.04.

Para llevar a cabo las pruebas, se ha usado la API de Python QISKit[11] desarrollada por
IBM para usar simuladores cuanticos y un servicio web para lanzar pruebas contra el ordenador
cuantico IBM-@Q de 5 qubits.

Para llevar a cabo la realizacion de esta memoria, se ha utilizado el lenguaje INTEXy ciertas
librerfas como blochsphere[I12] para poder dibujar esferas de Bloch, o librerias externas como
gpic[I3] para crear las imédgenes de los circuitos cuanticos mostrados.

4 SECCION 2: ESTADO DEL ARTE



Introduccion a la computacion cuantica

En esta seccién se hace una introduccién a los conceptos técnicos necesarios para enten-
der la motivacién y el disenio del algoritmo. Se abarcaran tanto los fenémenos fisicos que se
producen en el ordenador cuantico como los principios matematicos necesarios para entender
todos los teoremas y demostraciones relativos a la computacién cudntica de este documento. El
lector deberia tener una base de conocimiento cientifico en los campos de matematicas, fisica
e informatica para entender toda la argumentacién, y seria imposible abarcar todos los temas
necesarios, por lo que se aconseja que el lector esté familiarizado con niimeros complejos,
operaciones con matrices y con ideas bésicas de algoritmia y programacién.

La fisica cudntica es un campo muy extendido y en actual desarrollo, y con una complejidad ma-
tematica y fisica muy alta, por lo que la siguiente seccion intentard no ser excesivamente formal,
centrandose sobre todo en las ideas claves minimas para entender la computacion cudntica.

3.1. Mecanica cuantica

La mecénica cuantica es una de las ramas més modernas de la fisica actual. Nacida en los
principios del siglo XX, y eclipsada parcialmente en sus inicios por otra teoria que surgié a la
par: la teoria de la relatividad, esta teoria intenta explicar el comportamiento de las particulas
subatémicas tales como quarks, electrones, etc.

Esta teoria surgié como intento de explicar el problema de la radiacién de cuerpo negro 1900,
por Max Plank, aunque las primeras formulaciones matematicas no llegaron hasta el ano 1920.

Fenémenos cudanticos A continuacién enumeramos los fendmenos cudnticos més relevantes
e importantes a la hora de trabajar con un ordenador cudntico[l4].

= Principio de superposicion: Segin este principio, un elemento puede poseer simultanea-
mente dos o més valores (infinitos).

= Principio de entrelazamiento: Este fenémeno cuantico introducido por Erwin Schrodin-
ger dice que dos o mas particulas entrelazadas no pueden considerarse como particulas
individuales, sino como un sistema con una funcion de onda tUnica para todo el sistema.

= Colapso de la funcién de onda: Esta teoria implica que la funcién de onda de un
sistema colapsa o toma un valor concreto una vez se interactie con ella, por ejemplo, se
haga una medida. Esto hace que el sistema pierda su estado de superposicion.
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= Principio de decaimiento o emision espontanea: Segin este fenémeno, un atomo,
molécula, etc. excitado tiende a pasar a un estado de energia més bajo, cumpliendo asi el
principio de conservacion de la energia. Aunque este principio no afecta directamente al
uso tedrico del ordenador, es muy importante a la hora de usar el ordenador real.

3.2. Ordenador cuantico

La computacién cudntica es una rama dentro de la computacién que basa su funcionamiento

fisico en fenémenos cuanticos, en vez de en fendmenos electromagnéticos, como la computacion
légica (también denominada computacién binaria, cldsica, electrénica o discreta).
La teorfa cuantica es algo nuevo y complejo que surgié a principios del siglo XX (aproximada-
mente 1920). En la década de los 80 se pensé en una aplicacién de la mecédnica cudntica para
crear una maquina de cédlculo, lo cual se atribuye a Paul Benioff. En 1985, David Deutsch pre-
sentd el disenio de la llamada Maquina Cuantica de Turing, que seria el equivalente cuantico
a la Mdquina de Turing, y el pilar de la computacién cuantica.

Qubit El elemento basico de la computacién cuantica es el qubit. El bit 16gico puede alma-
cenar un valor 0 o 1. Andlogamente, el qubit almacena todos los valores entre 0 y 1 a la vez.
Un qubit se encuentra en un mismo momento en un solo estado cuantico, y este estado es el
que determina la probabilidad de que el qubit tenga uno u otro valor al ser medido.

Al igual que en la computacion légica, existen una serie de puertas que transforman el estado
cuéntico de un qubit.

Ordenador cuantico Es una maquina compuesta de qubits, la cual basa su funcionamiento
en medir el estado de un qubit en un momento dado una vez aplicadas las transformaciones
(puertas) pertinentes, y pasa el resultado de esta medida a un ordenador légico ligado. Esta
medicién es un bit con valor 0 o 1, ya que pierde su estado de superposicién al ser medido
(colapsar). Este conjunto de transformaciones es lo que se denomina algoritmo cudntico.

Uso en paralelizacién El hecho de que un qubit contenga més de un valor a la vez (y no
s6lo uno, sino todos) es relacionable con la idea de la paralelizacion computacional.

Cualquier valor, ya sea nimero, caracter o texto (finito), puede ser codificado en una cadena
finita de bits. Si imaginamos que cada uno de nuestros bits puede contener un 0 y un 1 a la vez,
podemos deducir que tenemos en una cadena finita de bits todos los valores posibles de dicho
ndimero, caricter o texto.

Hasta ahora, los sistemas de paralelizacién computacional se basan en usar varios procesadores,
los cuales llevan a cabo el mismo célculo (o aproximado), y en un sistema que sea capaz de
organizar los calculos de cada uno y de recoger y reorganizar sus resultados. El hecho de poder
contar con un elemento que tenga varios valores a la vez permite lo que se conoceria como
paralelizacion perfecta.

Resultado probabilistico El qubit contiene todos los valores a la vez, pero una vez se tome
una medida sobre él estos valores colapsan a un tunico valor. En nuestro caso los denotaremos
como 0 y 1 para seguir la analogia con la computacion légica. La idea principal es que podemos
modificar nuestros qubits para que se acerquen mas al estado 0 o al estado 1. Esto implica que
en el momento de nuestra medicidn, el resultado es, (con un cierto sesgo), aleatorio. Esto choca
con la idea bésica de la computacién légica y la tedrica Mdquina de Turing, pues no podemos
anticipar el resultado de un calculo antes de haberlo realizado.
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Utilidad Existen gran variedad de algoritmos y cédlculos realizables por un ordenador cuanti-
co que serian impensables para un ordenador légico debido al tiempo que requeriria ejecutarlos.
Entre ellos se encuentra el Algoritmo de Grover (capitulo |A]), o uno de los mas famosos algo-
ritmos debido a su importancia en la criptografia actual, el Algoritmo de Shor.
(Para mas informacién sobre algoritmos cudnticos, consulte la bibliografia [5]).

Limitaciones Existen varias limitaciones a la hora de trabajar con computacién cudntica.
Entre las limitaciones debidas al especifico y complejo hardware que necesita una méaquina de
estas caracteristicas, encontramos el del decaimiento cudntico, lo que hace muy dificil mantener
el valor del estado de los qubits por mucho tiempo. En este momento se consigue mediante el
uso de superconductores y temperaturas cercanas al 0 absoluto.

También existen problemas a la hora de realizar mediciones sobre los qubits. Estas mediciones
de estados cuanticos se llevan a cabo sobre particulas de tamanos subatémicos.

Existen también problemas debidos al software, como puede ser el hecho de que el resultado
sea aleatorio, lo que obliga a repetir un mismo célculo muchas veces para asegurarse (nunca al
100 %) de que el resultado es fiable.

También existe la limitacién de que el resultado de una operacién cudntica debe ser siempre
reversible, contrariamente a lo que ocurre en una operacién légica, como podria ser la operacién
AND. Esto implica que en computacién cudntica no se puede copiar informacién. Por ejemplo,
no se puede copiar el estado de un qubit a otro.

3.3. Esfera de Bloch

La Esfera de Bloch es un concepto matemaético utilizado en la mecdnica cudntica para
describir el comportamiento de un estado cuantico. Esta esfera ayuda a representar de una
forma visual y cémoda un estado cudntico, como puede ser un qubit]15].

10)

ﬁg

y
5
. .
R tacién d de-
gz)dasefsrfzsr?:asamon ¢ coorde (b) Representacién de un esta- 1
' do cualquiera. (c) Estados |0) Norte y |1) Sur.

Figura 3.1: Representacién de una Esfera de Bloch.

Qubit Un qubit puede representarse como un vector unitario (médulo 1) con origen en el
origen de coordenadas. De esta manera vemos que cualquier qubit puede representarse como
un punto en la superficie de una esfera de radio 1 (figura , o una Esfera de Bloch. Este
qubit estd representado univocamente mediante dos valores, una elevacién sobre el ecuador,
representado como ¢ y un acimut o fase representado como 6 (figura .

Se podrian usar 3 valores para representar un estado, ya sea mediante coordenadas cartesianas
o mediante coordenadas esféricas, pero uno de esos tres valores siempre va a ser dependiente de
los otros dos (debido a que el radio de la esfera es constante), por lo que es innecesario.

Al trabajar matemaéticamente con un qubit, por sencillez a la hora de aplicar transformaciones,
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este se representa mediante un vector complejo, y no mediante estos dos angulos.

Vamos a entender un qubit como un punto en la Esfera de Bloch. Si este punto se encuentra
en el punto Norte de la Esfera (figura azul) este qubit tendrd valor tedrico 0 (100 % de
probabilidad de ser 0) y se representa con el nombre |0) (Este valor es puramente tedrico. Debi-
do a errores de medicién y al fenémeno de decaimiento no se puede asegurar 100 % el valor de
un qubit antes de medirlo). Andlogamente, si el qubit estd en el punto Sur (figura r0jo)
tendrd valor 1 y se llamara |1).

Para cualquier otro punto en la esfera, el qubit se puede representar como una combinacién
de los estados |0) y |1) de forma que cada estado se representa mediante un vector < Z ), que

representa la combinacién lineal a |0) +b |1). Estos dos valores representan un punto en la esfera
de Bloch de forma que a = cos(£) y b = sin(£)e?, por lo que se cumple que |a> + [b]* = 1
(necesario para que el vector sea unitario).

Transformaciones Las transformaciones bésicas que existirian en un ordenador cudntico son
representables con giros sobre los ejes de la esfera. De esta forma, un giro de 180 grados sobre el
eje X convertirfa un qubit |0) en |1) y viceversa, permitiéndonos modificar el valor de nuestro
qubit. Nétese que un giro sobre el eje Z no modifica el valor del qubit, pero si su estado.

Mas dimensiones Al igual que en la computacién légica, para dar sentido a un programa
o algoritmo es necesario mas de un valor. En computacién cuantica se pueden representar los
qubits como Fsferas de Bloch individuales mientras no exista conexién entre estos, pero en el
momento en que un qubit entra en relacién con otro esta representacion deja de tener validez;
necesitariamos una 5-esfera (esfera de 5 dimensiones), para usar su superficie de 4 dimensiones.
Por eso, en cuanto se trabaja sobre méas de un qubit entrelazado, se usa notaciéon matematica y
se deja aparte la intuicién espacial.

3.4. Notaciéon matematica e interpretaciéon matricial

Bra-Ket En esta seccion introduciremos la notacién matematica necesaria para entender los
razonamientos matematicos del algoritmo. Tanto en mecanica cudntica como en computacion
cudntica se usa la notacién bra-ket (¢|1)) o notacién de Dirac para representar valores cudnti-
cos. La notacién bra (| se usa para representar transformaciones o aplicaciones sobre un estado
(matriz), y la notacién ket |¢) para representar estados cudnticos (vector).

Ket-Estado Un estado cuantico de un solo qubit se representa mediante dos angulos acimut-
elevacion o mediante un vector complejo unitario de dimension 2. Es dificil establecer una
relacién concreta entre los valores de este vector y la representacién del qubit, pero aproxima-
damente puede entenderse que la primera dimensién representa una proporcion entre 0 y 1 la
cercania del estado al norte de la esfera, y la segunda dimensién (compleja) representa la fase
o giro sobre el eje Z del qubit.

En la tabla 3.1 se representan los estados basicos de la esfera (estos son los més representativos,
formados por el corte de los ejes con la esfera) y en la figura se muestran estos estados
localizados en la esfera.

El estado |z) en la tabla es un ejemplo general sobre un estado cuantico cualquiera, y los
valores que se esperarian de él. El vector debe ser unitario, es decir, cos?(p/2) + sin(p/2) = 1.
Por ejemplo, si el estado |x) representase al estado |i), ¢ tendria valor /2 y por lo tanto su
probabilidad de ser 0 serfa cos?(r/4) = 0,5.

8 SECCION 3: INTRODUCCION A LA COMPUTACION CUANTICA



Algoritmo de Diserio Matricial de Circuitos Cudnticos

Se puede ver que los estados que se encuentran sobre el ecuador tienen las mismas probabilida-

des de ser 1 como de ser 0. Para denotar un estado se puede también usar la suma de distintos
. 1 1

estados. Por ejemplo, el estado |+) = |0) &+ 1) ok

Cuando se aumenta la dimensién (el nimero de qubits), el vector que representa a un
estado se duplica. De este modo, el estado |00) que representaria dos qubits en el Norte de
la esfera, tendria una representacién como vector ( 10 00 )t (* indica transpuesto, se usa
esta notacién para evitar escribir vectores en vertical), y el estado |11) se representaria con
el vector ( 0 0 01 )t. Esto genera un problema a la hora de trabajar tedricamente con la
computaciéon cuantica, ya que, teniendo n qubits, trabajamos con vectores de 2" dimensiones,
lo que complica la simulacién en ordenadores légicos.

nombre |0) 1) |+) |—)
1 0 1\, 1\,
(o) (1) ()% (L)
Probabilidad de tener valor ”0” | 100% 0% 50 % 50 %
Probabilidad de tener valor 717 | 0% 100 % 50 % 50 %
nombre i) 17) |z)
LY 1 L\ 1 cos(p/2)
veetor ( i ) v < i > V2 ( sin(p/2)e
Probabilidad de tener valor 70" 50 % 50 % cos®(¢/2)
Probabilidad de tener valor 717 50 % 50 % sin?(¢/2)

Tabla 3.I: Tabla con los estados cuanticos estandar

Vi 4By —— AT W Nimaamy,

1)

(a) Estados |0) y [1). (b) Estados |+) y |—). (c) Estados i) v |7).

Figura 3.2: Representacién de los estados basicos de un qubit.

Bra-Transformacién Las transformaciones que se pueden aplicar sobre un estado cudntico
son giros sobre uno de los ejes de la Fsfera de Bloch, o una concatenacién de varios giros, lo que
equivale también a un giro.

Estos giros se representan mediante una matriz cuadrada de 2 x 2. Estas son matrices unitarias,
matrices cuyo médulo es 1 y que cumplen AA* = A*A = I, donde A* representa la matriz
conjugada transpuesta.

La implementacién a nivel fisico de estas transformaciones puede variar dependiendo del hard-
ware utilizado, pero se puede generalizar el uso de 3 transformaciones bésicas (o como minimo
dos de ellas, puesto que aplicando giros sobre 2 ejes distintos se puede obtener cualquier giro en
la esfera) que son los giros sobre los ejes principales de la Esfera. En la tabla se muestran

SECCION 3: INTRODUCCION A LA COMPUTACION CUANTICA 9



Algoritmo de Diserio Matricial de Circuitos Cudnticos

las distintas representaciones matriciales para los giros que se puede realizar, y en la figura [3.3]
se muestran dichos giros. La demostracion de que estas matrices representan giros se puede ver

en el anexo [B][16]
X(a) Y(B) Z(7)
gos(%) sm(%)z] [cc?s(g) —sm(g)] [1 0 ]

0 e

Tabla 3.II: Giros béasicos. X(«) denota un giro de o grados sobre el eje X

%

y

(a) Giro X. (b) Giro Y. (c) Giro Z.

Figura 3.3: Representacion de los giros basicos.

3.5. Puertas cuanticas

Ya se ha explicado que las transformaciones de estados son giros sobre los ejes de la Esfera.
Dos giros sobre distinto eje concatenados (uno detrds de otro) generan una transformacién so-
breyectiva, esto es, pueden transformar cualquier estado en cualquier otro dentro de la Esfera de
Bloch (demostracién en. Pero al hablar sobre computacién cudntica, es mas comun referirnos
a esas transformaciones como puertas cudanticas, que harian las veces de puertas ldgicas en
la computacion légica. Hay dos tipos de puertas: aquellas que afectan a un solo qubit, y una
puerta especial que afecta a dos qubits.

Puertas Unitarias Las puertas unitarias son aquellas que afectan a un solo qubit, como
pueden ser los giros representados en la figura [3.3] aunque comunmente en la computacion
cuantica se tiende a usar puertas estandar ya existentes en vez de los giros parametrizados
sobre los distintos ejes.

Cuando se habla de puerta cudntica y no de transformacidn se suele nombrar con una o varias
letras mayusculas, por ejemplo X, aunque la representacién correcta seria (X|.

En la tabla se representan los giros sobre los ejes principales(puertas de Pauli[l4]), asi
como la puerta Hadamard o también llamada puerta H. Para cada uno de ellos se muestra los
estados estandar y a qué estados se transforman tras aplicar cada puerta.

En la seccién B.6] se describird cémo modelar estas transformaciones de manera matematica.

Las tres puertas XY Z representan giros de angulo 7 con respecto al eje que nombran. La
puerta Hadamard o puerta H es una transformacién no trivial que surge de la concatenacion
de un giro Y de 90° y un giro Z de 180°. Esta puerta tiene una gran trascendencia porque
transforma el estado inicial |0) en un estado superpuesto |+), es decir, un estado con la misma
probabilidad de ser 0 y 1. Este giro se puede ver representado en el anexo
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nombre X Y Z H
. 0 1 0 -1 1 0 1 1 1
matriz [1 0} [1 0} [0—1] {1—1]2
giro 180° sobre eje X  180° sobre eje Y 180° sobre eje Z VY - Z
0) — 1) 1) 0) +)
1) — 10) 10) 1) |-
+) — +) =) =) 10)
=) — =) +) +) 1)
|7) — 17) |4) 17) 17)
j) — |2) 17) |2) i)

Tabla 3.III: Puertas cudnticas bésicas. Cada fila |z) representa el estado origen y el estado al
que transforma cada puerta.

Como podemos apreciar en la tabla las puertas basicas transforman los estados estandar
entre ellos. Podemos ver también que estas operaciones son a su vez sus propias inversas, ya
que V¢ se cumple que (X X |¢p) = |¢), e igualmente se puede comprobar para cualquiera de las
puertas estandar.

Una duda razonable que puede surgir seria el hecho de que el giro X no se corresponde con la
matriz solucién de sustituir el angulo. Esto no es una errata, pero tampoco tiene una explicacion
trivial. Se explicara méas adelante en esta misma seccion.

Puertas de Fase Existen también las puertas de fase, incluidas en las puertas estandar.
Son aquellas que se corresponden con giros en el eje Z. Estas puertas, no modifican el valor final
del qubit, pero afectan a futuras operaciones sobre el mismo.

Todas las operaciones tienen una operacién inversa, representada mediante el simbolo T la cual
cumple YU = UU'T = UU = I. Si una misma puerta es su inversa (como se ha explicado antes)
no se usa la notacién . En la tabla se muestran las puertas de fase junto a sus inversas y
algunos ejemplos de estados estandar y los estados finales en los que se ven transformados.

nombre S st T Tt
i 10 1 0 I 1 0
matriz 0 i 0 0 % 0 17—51
angulo sobre Z 5 -5 T x
0) — 0 0) o 0
l+) — |4) 17) (10) + 1) 61”/4)3 (10) + 1) efz”/‘*)ﬁ
i) — - |+) (10) +[1) ) J5 (10) + [1) e/ I

Tabla 3.IV: Puertas cuanticas de cambio de fase

En la tabla se puede ver que dos puertas T generan una puerta S, y que dos puertas
S generan una puerta Z.

Teorema de Universalidad El teorema descrito en [7] implica que solo mediante las puertas
H y T se genera un sistema universal. Esto es, mediante la concatenacién de operaciones de
estos dos tipos se puede llegar a cualquier punto de la Esfera. Esto tiene importancia en los
casos donde estas sean las operaciones basicas del ordenador. En nuestro caso vamos a usar los
giros parametrizados con los angulos deseados, por lo que la universalidad la da el tener un set
infinito de transformaciones.
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Puerta XNOT La puerta X NOT es la tinica puerta fisica que afecta a dos qubits y mediante
la cual se puede generar un sistema de mayores dimensiones.

Esta puerta se denomina X-NOT o XNOT y funciona como una CNOT légica aplicada a uno
de los dos qubits. El qubit que modifica su valor se denomina target y el qubit del cual depende
esa modificacién se denomina source.

) )
|01) — |01)
|10) — [11)
|11) — |10)

Tabla 3.V: Tabla de verdad para los estados estandar siendo el primer qubit source y el segundo
target

Como vemos, esta puerta funciona como una puerta X sobre el segundo qubit, siempre que
el primer qubit tenga un valor de ”1”. Este efecto se consigue mediante el fenémeno del entre-
lazamiento cudntico. El primer qubit no tiene un valor concreto, por lo que la transformacion
sobre el segundo no serd concreta tampoco hasta que la onda no colapse.

Esta puerta se representa mediante una matriz cuadrada de 4 x 4 mostrada en la ecuacién [3.1]

00) [1 0 0 0
01) {0 1 0 0
1100 [0 0 0 1
11) {0 0 1 0

(3.1)

Las puertas estandar y giros parametrizados y la puerta X NOT crean el conjunto de las
Puertas basicas o puertas implementadas dentro de un ordenador cuantico. Este conjunto
genera un sistema universal, es decir, es suficiente para generar cualquier programa o circuito.

Puerta Identidad Sobre la Esfera de Bloch existen ciertas operaciones que se consideran
identidad, es decir: YU — Ul = IU = U < I = identidad. Aunque no existe la puerta
identidad, existe un conjunto de matrices que equivalen a ella.

Para empezar, vemos que cualquiera de los giros, si los parametrizamos con un angulo de valor

0, forman la matriz identidad [ } que devuelve a cualquier qubit afectado a él mismo.

0 1
Pero no es la tnica operacién identidad que existe. Debido a la notacién matematica escogida
para representar matricialmente los estados y las operaciones, cualquier operacién que de como
ela) 0

0 ¢la
una operacion identidad. Esto complica las operaciones a la hora de calcular los vectores que

resultado una matriz como esta: [ ) ]Va (se usa la notacién €(a) = €'*) genera

. . — 1
representan el mismo estado. Por ejemplo el vector ( y el vector < ; representa el

)
1
mismo estado, y existen infinitas representaciones del mismo estado. Debido a esto, los estados
se representan de forma que la primera dimensién no tenga valores complejos, y de esta forma
solo existe una representacién posible de cada estado. Es importante no confundir esto con el

hecho de que las transformaciones de fase no modifican el valor del qubit.

Puertas Compuestas En la siguiente seccién veremos como se calcula matematicamente la
concatenacion de estas puertas béasicas para dar lugar a circuitos o puertas compuestas, pero
para hacer una pequenia introduccién, diremos que las puertas compuestas nacen de la unién de
una o més puertas concatenadas modificando uno o varios qubits al mismo tiempo, y generando
puertas de mds alto nivel computacional.
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3.6. Circuitos y simuladores

Un programa cuantico es una concatenacién de puertas béasicas. Vamos a explicar las ope-
raciones matematicas que modelan la concatenacion de dichas puertas.

Circuitos Se llama circuito a una concatenacion de puertas cudnticas basicas o complejas
(formadas por puertas bésicas) y cada puerta se representa mateméticamente con una matriz.
Esta matriz se puede obtener a base de operaciones matematicas.

Estos circuitos se representan mediante graficos como el mostrado en la figura ejemplo Cada
una de las lineas horizontales representa un qubit, y las transformaciones que va sufriendo (se
lee de izquierda a derecha). El cuadrado representa una puerta bésica, en este caso una puerta
de Hadamard. El circulo con una cruz representa que ese qubit serd el target de una puerta
XNOT y el punto negro unido a este circulo representa que ese qubit serd source para dicha
puerta.

40 {H[—¢—

ql

Figura 3.4: Ejemplo de circuito cuantico. Representacién del Primer Estado de Bell

Los circuitos se pueden dividir en pasos, donde cada paso equivale, o bien a una puerta

cuantica que afecta a varios qubits o a un conjunto de puertas unitarias sobre diferentes qubits,
es decir, que las operaciones son individuales y no se afectan entre ellas.
Cuando un paso esta formado por puertas unitarias, se aplica un producto tensorial[17] sobre las
matrices para obtener la matriz esperada. En la tabla se muestra tres circuitos formados
por puertas unitarias que afectan a un qubit u otro y sus matrices representativas, formadas
mediante el producto tensorial de la matriz correspondiente al primer qubit con la matriz
correspondiente al segundo qubit.

90— g0 g0
circuito ql g1 ql l

]

0100 0010 00 01
matriz qubit solucién 1000 0 001 0010
00 01 1 0 00 0100
0010 0100 1 0 00
|00) — |01) |10) |11)

Tabla 3.VI: Resultados de la concatenaciéon de matrices en un mismo paso

A la hora de concatenar varias puertas o pasos seguidos, el funcionamiento matematico
equivale a multiplicar las matrices soluciones de cada paso. Un ejemplo sencillo se ilustra en la
figura donde se ve la concatenaciéon de dos puertas T.

Como sabemos, la puerta T" equivale a un giro de 7 con respecto al eje Z, y la puerta S equivale
a un giro de 5. Por lo tanto vemos que una concatenacién sobre un circuito de un solo qubit de
dos puertas T' deberfa dar una matriz igual a S:

Asi vemos como la multiplicacién de matrices nos da el resultado esperado. Si seguimos con
este ejemplo, vemos que al concatenar las dos puertas T y una puerta ST, la solucién deberfa
ser una matriz identidad. Esto se muestra en la figura 3.6

Es importante tener en cuenta que la multiplicacién de las matrices se lleva a cabo de forma

SECCION 3: INTRODUCCION A LA COMPUTACION CUANTICA 13
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QO T—Tr—=—S

{ : 6(2’) ] [ (1) 6(%) } - { : e(%) } (3:2)

Figura 3.5: Circuito TT'.
q0 =
A

Figura 3.6: Circuito TTST.

inversa al orden légico de las puertas. De esta manera, una puerta X concatenada detrds con

una puerta S darfa una matriz (XS| = [ (2 (1) ] y no (SX| = [ (1) é ]

Simuladores Un Simulador Cuéantico simula el funcionamiento de un ordenador cudntico
mediante la transformacion de puertas a matrices, y realizando las operaciones necesarias para
generar la matriz final. De esta forma, dado un estado inicial y un circuito, se puede conocer la
matriz solucién de dicho circuito, y multiplicando la matriz por el vector del estado, se obtiene
el vector del estado resultante.

Los simuladores trabajan siempre con un estado inicial |0..,00), que es el estado inicial por
defecto, o estado de menor energia. Esto es debido a que para partir de un estado que no fuese
el basico, deberia aplicarse al estado basico un circuito previo, lo que equivaldria a concatenar
ambos circuitos (recuérdese que en la computacién cudntica no es posible copiar informacién ni
guardar un estado de una ejecucién a otra).
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Este capitulo constituye el fuerte de la investigacién llevada a cabo durante el proceso de
este Trabajo de Fin de Grado. FEn este capitulo se recoge toda la informacién relativa al Algo-
ritmo de Diseio de Circuitos Cudnticos (a aprtir de ahora QCMD - Quantum Circuit Matricial
Design algorithm).

4.1. Introduccion al algoritmo

El algoritmo QCMD es un nuevo algoritmo disefiado para el ambito de la Computacion
Cuantica, pero pensado para ejecutarse en un ordenador o un autémata Logico.

4.1.1. Idea principal

El propésito de este algoritmo es la posibilidad de abstraccién a la hora de trabajar con pro-

gramas dentro de la computacién cudntica. Como ya sabemos, el ordenador cuantico funciona
mediante un circuito que concatena transformaciones sobre qubits para llegar a un resultado
deseado. Este resultado se puede representar matematicamente mediante una matriz.
La idea principal de este algoritmo es llevar a cabo el proceso contrario, es decir, dada una
matriz solucién a la que se quiere llegar, construir automaticamente el circuito cuantico
necesario para llegar a ella. Andlogamente a un ordenador electrénico, seria crear un lenguaje
auxiliar mediante el cual construir un camino hardware para tener un procesador que, con una
entrada especifica (estado inicial bésico) consiga una salida esperada, como seria el caso del
lenguaje HDL (Hardware Description Language).

4.1.2. Motivacién

Abstraccién Uno de los principales problemas a la hora de enfrentarse a la creacién de un
programa cuantico, es el hecho de que se trabaja a muy bajo nivel, a nivel de puertas bésicas
sobre los qubits. El algoritmo propuesto permitiria poder usar un ordenador cudntico sin tener
que conocer la fisica y el hardware interno, y de una forma mas comoda y rapida.

15
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Uso en algoritmos Este algoritmo nunca se usard a la hora de crear programas enteros, ya
que, si se conoce de antemano la soluciéon no es necesaria la implementacion del circuito. Pero
existen varios algoritmos cuanticos basados en la concatenacién de matrices conocidas, de forma
que se conoce el resultado matematico esperado del mismo, pero no se conoce el circuito interior
que generaria esa salida esperada.

Este es el caso del Algoritmo de Bisqueda de Grover descrito en el anexo [A] Este es uno
de los algoritmos mas importantes en la actualidad en el mundo de la computacion cuantica ya
que permite una busqueda en un conjunto no ordenado con una complejidad no alcanzable por
un ordenador légico.

También se incluirfa entre los usos del algoritmo QCMD la generacién de un circuito previo a
un algoritmo con circuito conocido, mediante el cual podriamos parametrizar el estado inicial
de entrada a dicho algoritmo simplemente con generar la matriz que transformaria el estado
tnicial bdsico en el estado inicial deseado.

De esta forma, el algoritmo reduciria el trabajo de un programador cudntico al estudio tedrico
y matematico del programa que quiere realizar, y no a la construccién del circuito de bajo nivel
que dard los resultados esperados.

4.1.3. Primera aproximacién

La primera aproximacion sobre cémo afrontar el problema fue mediante una busqueda ex-
haustiva en arbol a través de las puertas bésicas conocidas (X, H, T, etc.) hasta llegar a alcanzar
la matriz deseada.

El limite de puertas necesarias para alcanzar dicho objetivo se describe en el articulo de la
bibliografia [I§]. Se sabe que existe una solucién (H y T generan un conjunto universal) pero
el nimero de puertas necesario es muy alto.

Como es facil de imaginar, esta aproximacién tenfa una complejidad computacional extrema-
damente alta, y solo resultaba efectiva para circuitos de uno o dos qubits, y matrices con giros
comprendidos entre las puertas basicas. Los problemas que se encontraron, entre otros, fueron:

= Multiplicacién a cada paso de las matrices solucién O(N?3), N = 2" siendo n el ntimero de
qubits y N el tamano de la matriz.

= Crecimiento exponencial a la hora de buscar en anchura en érbol.

= La multiplicacién de matrices es dificilmente rastreable, y da lugar a resultados que a la
vista podrian considerarse aleatorios, por lo que impide la poda trivial de ramas en la
busqueda.

Por esto, esta primera aproximacién se rechazé rapidamente.

Finalmente, la aproximacion elegida para el disefio del algoritmo es la divisién de la matriz
principal en submatrices.

4.2. Descripcion del algoritmo

En esta seccién se describe el algoritmo, es decir, el fundamento tedrico en el que se basa
su funcionamiento, las razones por las que se ha decidido tomar esta via, las demostraciones
matematicas necesarias para comprobar que el algoritmo ciertamente genera lo esperado y el
calculo de tiempo y espacio necesario para llevar a cabo la ejecucién del mismo.
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La idea principal de este algoritmo es generar un circuito para una matriz dada, pero los
pasos intermedios que se han disenado (puertas compuestas) también suponen en si mismas una
abstracciéon del problema de la programacién a bajo nivel, y su uso también es generalizable
fuera del ambito de este algoritmo.

Noétese que la idea principal del algoritmo es tratar de encontrar un circuito que genere una
matriz, y esta matriz es de tamano N x N, N = 2" donde n es el niimero de qubits. Por tanto, sea
cual sea la implementacién, serd necesario un espacio minimo de O(22"). Esta limitacién existe
para cualquier algoritmo que intente generar un circuito mediante la construccién de una matriz.

Este diseno tiene el objetivo de encontrar de una forma sencilla y con una cota superior
en nimero de puertas, el circuito relacionado con una matriz. No intenta ser eficiente en ntimero
de pasos del circuito, sino que basa més su funcionamiento en encontrar una solucién entendible
y de facil trazabilidad en un tiempo acotado superiormente.

4.2.1. Fundamento tedrico

El teorema sobre el que se basa este algoritmo, demostrado en la bibliografia[7] indica que

cualquier matriz unitaria es divisible en un niimero finito de matrices unitarias que afecten
Unicamente a dos filas y columnas, o lo que seria lo mismo, una matriz 2 x 2 encajada en
una matriz diagonal de mayor dimension.
Existe también un teorema en la documentacién de la Quantum Ezperience IBM [19] en el que
se recoge la posibilidad de obtener una puerta cuantica condicionada para cualquier transfor-
macion necesaria. La Unica puerta cudntica condicionada basica es la X NOT, la cual es una
transformacion X sobre un qubit. Esto se generalizard a cualquier transformacién bésica.

Se ha creado un sistema completo cimentado en estos teoremas donde se trabaja con puertas
cudnticas condicionadas con mas de un qubit que crean giros muy especificos, los cuales tienen
una matriz muy acotada y controlable que se puede usar més adelante para dividir la matriz
principal.

4.3. Diseno

4.3.1. Resumen de diseno

Andlogamente a un ordenador cldsico, las puertas basicas de un ordenador cuéntico (aquellas

implementadas a nivel hardware) se pueden concatenar para generar circuitos mas complejos
y con distintas funcionalidades.
Este algoritmo se ha diseniado para generar distintos circuitos con complejidades ascendentes
de forma que mediante puertas basicas (lo que serian puertas légicas NOT o AND entre otras)
poder llegar a ciertas funcionalidades especificas (andlogo a generar multiplexores o circuitos
combinacionales de mayor complejidad), hasta el punto de generar un algoritmo cuyo parametro
de entrada sea una matriz, y que sea capaz de generar la concatenacién interna de puertas para
crear un circuito cuantico que genere dicha matriz.

Esto quiere decir que se han ido creando puertas o circuitos cada vez de maés alto nivel, hasta
llegar a un circuito capaz de generar la matriz deseada. Pero las puertas intermedias también
suponen una solucién en si mismas ante ciertos problemas actuales en la computacién cuantica,
y tienen valor aun aisladas del resto del algoritmo.
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4.3.2. Puertas basicas

Las puertas bdésicas, como se explicé en el capitulo son puertas que se encuentran
implementadas a nivel hardware en un ordenador cuédntico (o se puede suponer que estdn im-
plementadas).

La profundidad (ntumero de transformaciones a nivel hardware necesarias para alcanzar dicha
puerta) de dichas puertas es 1.

Las puertas que se van a usar para el disenio de este algoritmo son las puertas estandar X
y H, las puertas de giro parametrizadas sobre los ejes X («), Y(8) y Z(7), y la puerta X NOT.

4.3.3. Puertas compuestas

A partir de aqui se describen los circuitos disenados para el algoritmo. Aunque la concate-
nacién de puertas basicas genere un circuito cuantico, estos circuitos se representan mediante
una matriz y suponen una transformacién sobre los qubits de igual manera que hace una puerta
cudntica, por lo que se nombraran también como puertas compuestas, que son el resultado de
concatenar otras puertas inferiores.

Varias de estas puertas tenfan ya formas de implementarse, como la puerta Toffoli, y algunas
otras existen solo de forma tedrica (se usa matematicamente su matriz pero sin la necesidad de
conocer la implementacién a nivel fisico), como las puertas de giros condicionados, mientras que
otras son de diseno propio. En este capitulo se incluyen todas las puertas y los disefios elegidos
para generarlas, asi como el cdlculo de la complejidad/profundidad de las mismas y la matriz
solucién de cada una de ellas.

4.3.3.1. Puerta de giro condicionado

Esta es la primera puerta compuesta con la que vamos a trabajar, que es, a su vez, la base
de toda la estructura superior.
Esta puerta consta de un qubit source y un qubit target y de un parametro angulo que indica
el dngulo de giro sobre el eje destino. Su funcionamiento se basa en realizar el giro sobre uno
de los tres ejes principales sobre el qubit target siempre que el qubit source se encuentre en un
valor positivo (cuando su onda colapse a un valor positivo).

La puerta béasica X NOT se consideraria como un giro condicionado de 180° sobre el eje X.
Existen algunos circuitos simples para los giros més utilizados, como el giro de 180° sobre los

ejes Y (figurald.lal) y Z (figura[4.1b)), que solo se componen de puertas estandar.

q0 —s B q0 —s B
gl i* - {5} gl # —H—o—{H}

(a) Puerta Y condicionada. (b) Puerta Z condicionada.

Figura 4.1: Puertas condicionadas estandar.

Segiin el teorema descrito en el libro de la bibliografia[7], cualquier puerta condicionada
puede generarse mediante la concatenacion de puertas estandar y el uso tunicamente de dos
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puertas X NOT', como se muestra en la figura [£.2a] Esto quiere decir que para cualquier giro
U (no tiene que ser necesariamente en uno de los ejes principales) existen tres concatenaciones
de puertas A, B,C' y una puerta de fase e tales que eCXBXA = U (figura 4.2c)) y a su vez

CBA = I (figura [4.2b))

Iy

0 —— _ e
0 -~ —{E-{E--a
(a) Teorema de puertas condicionadas.
¢0 {AFBfHC}—=—1} 40 4AFHXHBIH X} = —Uu}-

(b) Generacién de la puerta identidad. (c) Generacién de la puerta U.

Figura 4.2: Teorema de construccién de una puerta condicionada.

En lo que a nuestro algoritmo respecta, solo vamos a usar giros sobre los ejes principales,
debido a su sencillez y a que son suficientes para generar el resto de las puertas. Recordemos
que dos giros de distinto eje se asimilan a un giro en otro eje. Por lo tanto, con giros en dos de
los ejes principales distintos podemos crear cualquier giro.

Para el caso del eje Z sabemos que la creacion de este giro es bastante sencilla debido a que, con-
catenando un giro de un dngulo « junto con otro —a conseguimos una transformacién identidad.
Pero si introducimos un giro 7 sobre el eje X (también podria ser sobre el Y') tras el primer giro
sobre Z, lo que conseguimos es que los dos giros sobre Z se concatenen, generando un giro de
angulo 2« (demostracién en . Un giro en el eje Y tiene las mismas caracteristicas (demos-
tracién en . Se puede ver una representacién grafica de un giro condicionado Y («) usando
puertas condicionadas Z en las figuras (sin activar la puerta Z) y[D.3|(con puerta Z activa).

En el caso del eje X existe la diferencia de que los giros condicionados entre los dos giros X
debe ser en cualquiera de los otros dos ejes. Esto nos permite concluir con uno de los circuitos
mas bdsicos que vamos a usar a partir de ahora, que se divide entre los tres giros (figura 4.3)).

q0
— - - 1 1 1
" X} 2 X X/} W Xem)— © —[Zem) V) [ ZC )

(a) Giro X condicionado.

0 . © _ Zam}
ol — o {2~ —{ZCa o Zam T

(b) Giro Y condicionado. (¢) Giro Z condicionado.

Figura 4.3: Construccién de los circuitos para generar un giro concatenado.

Podemos observar que hay tres formas distintas de crear un giro X. Para las dos primeras
se usa una puerta condicionada de angulo 7 entre los ejes principales, y después se concatenan
los giros sobre el eje X. La 1ltima forma transforma la matriz del giro Y en una matriz de giro
X, como se demustra en la ecuacién [C.4]

La puerta en el qubit ¢q0 del giro del eje Z tiene su explicacién, pero no es una demostracion
trivial. Es la puerta de fase e necesaria en el teorema descrito anteriormente.

Matriz La matriz de esta puerta esta compuesta por una diagonal de elementos 1 menos en
los casos donde la puerta esté activada, donde se encuentra la matriz del giro. De esta forma,
en circuitos de solo dos qubits obtenemos una matriz como la representada en para el caso
en que el qubit target sea el tltimo qubit, o una matriz como [4.2| para el caso donde el primer
qubit sea target. Las variables a, b, ¢, d representan los valores relativos al giro en 1 qubit.
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00) 1000 00) 1000
o) |0 10 0 0) |0 a0 b
) [o00ab| @Y ) (oo 10| @2
i o0 ¢ d o e o0 d

Figura 4.4: Matrices que representan un giro condicionado.

Al aumentar el niimero de qubits, el producto tensorial se lleva a cabo de igual manera que
con las puertas basicas. Por ejemplo, en la figura se muestra como seria un giro sobre el eje
X de angulo a en un circuito de tres qubits, desde el primer al Ultimo qubit.

1000) 1000 0 0 0 0
001) 0100 0 0 0 0

q0 ——e—— 010) 0010 0 0 0 0

g —t 011) 0001 0 0 0 0
|100) 0 0 0 0 cos(§) sin(5)i 0 0

22 X(a) | 101) |00 0 0 sin(3)i cos(3) 0 0

(a) Circuito re- |110) 0000 0 0 cos(g) sin(%)i

presentativo. 111) L0 0 0 0 0 0 sin($)i cos(¥) |

(b) Matriz solucién del circuito.

Figura 4.5: Giro condicionado X en un circuito de 3 qubits.

Inversién Como ocurre con los giros basicos, los giros condicionados generan su inversa con el
mismo giro condicionado pero con angulo inverso. Se puede ver la demostracién en las ecuaciones

C3y[Ch

Complejidad (P;) Esta ya es una puerta compuesta, lo que quiere decir que necesita de una
concatenacion de instrucciones para llevarse a cabo. Como se puede ver facilmente, el uso del
giro condicionado X no es eficiente, ya que para generar las puertas de giro Y o Z condicionadas
que harian de auxiliares, se necesitan mas puertas internas, por lo que el algoritmo no usard
puertas X condicionadas, y cuando sean necesarias se crearan mediante concatenacion de las
otras 2.

Para tomar una medida concreta en cuanto a esta puerta, se tomarda como cota superior el
ntmero de puertas que usa el giro Z = 5, ya que es mayor que el giro Y = 4. Por lo tanto
podemos concluir que la complejidad de esta puerta. P, =5 = O(1) (P, indica la profundidad
de la puerta z. En este caso g representa a la puerta de giro condicionado).

4.3.3.2. Puerta de giro condicionado multiple

Esta puerta corresponde a un giro igual al de una puerta de giro condicionada (ver |4.3.3.1)
pero donde existe més de un qubit source (Figura [4.6). Esto es, para que se lleve a cabo el giro,
todos los qubits source de la puerta deben tener valor 1.

q0 —e—

ql —e—
2 {U}

Figura 4.6: Puerta condicionada multiple.
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Como vemos a continuacién, existen dos disenos diferentes para ella, cada uno con sus
ventajas e inconvenientes.

Diseno principal En este diseno, la puerta con 2 qubits sources viene representada por la
figura [7] mientras que las demds puertas se generan de forma recursiva (ver figuras y
, de manera que se necesita una puerta condicionada con un source menos en cada paso,
acabando el iltimo paso en una puerta condicionada simple. La logica tras este diseno y los
disenos de niveles superiores (ﬁgura y [4.9) no es trivial y se recoge en el anexo El diseno
de la puerta con 2 sources se ha recogido de la bibliografia, mientras que el disefio recursivo de
las puertas de més nivel es propio.

q0

ql = * & T D
92+ Z(a) |- Z2(=0/2) —{2(e/2) }-

Figura 4.7: Giro Z condicionado por 2 qubits.

q0
ql N D D D D
02 & o—{X]| X}

B3 {Ze) |~ —{Z@f) 7o/ | (Zo/2)

Figura 4.8: Giro Z condicionado por 3 qubits.

q0

ql —o— & é

q2 P Pary Fary

q3 X L
“{Z}— —{Z@?) Z(=a/?) | [Z(a/2)

Figura 4.9: Giro Z condicionado por 4 qubits.

Matriz Esta matriz se construye de igual manera que la matriz de giro condicionado simple,
pero teniendo en cuenta que los valores que representan el giro solo deben aparecer en los puntos
correctos donde los sources estén activos. En la figura se muestra un ejemplo.

000) 10000 0O 0 0
001) 01000 0 0 0
40 010) 00100 0 0 0
011) 00010 O 0 0
1 |
gl 1Y(a) 000 [ooo0oo01 0 0 0
q2 101) 0000 0 cos(g) 0 —sin(g)
|110) 00000 O 1 0
|111) [0 0 0 0 0 sin(§) 0 cos(5)

Figura 4.10: Giro condicionado Y en un circuito de 3 qubits.

Inversién Al igual que los giros condicionados simples, los giros condicionados miltiples ge-
neran su inversa mediante la inversién del angulo del giro.
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Complejidad (P,,41)) La profundidad de esta puerta viene dada por la suma recursiva de
la complejidad de las puertas més pequenas (con menos sources).

Para calcular la complejidad usaremos el parametro s para referirnos al nimero de qubits source
de la puerta. El nimero de puertas bésicas X es 2 para cualquier niimero de qubits. El nimero
de puertas XNOT es 2(s — 1) + 2(s — 2). El nimero de puertas necesario para las puertas
condicionadas multiples inferiores es 3(P,,(s—1)) donde P, (x) es la profundidad de una puerta
condicionada multiple para x qubits source, y donde Pp,(2) = 3P, + 2 = 17. Por lo tanto, el
célculo de profundidad de esta puerta serd Py, (s) =2+4+2(s—1)+2(s—2)+ P,(s—1) de donde
obtenemos que Pp,(s) = 22-3°72 — 25 — 1 = O(3%). La demostracién se puede ver en el anexo
[C.2

Diseno secundario En este segundo diseno se usan las puertas Toffoli (se verd con més
detalle en la siguiente seccién que funcionan como una puerta légica AND. Es decir, se
puede generar un Unico qubit auxiliar que se encuentre a 1 si todos los deméas qubits implicados
tienen valor 1, o a 0 en cualquier otro caso (ﬁgura, y de esta forma reducir el disefio a una
unica puerta condicionada simple[7]. La demostracién de este disefio se encuentra en la ecuacién
C12

El problema principal de esta puerta es que necesita qubits extra para poder utilizarse, y estos
aumentan en 2% el tamano actual de la matriz. También supondrian un problema dependiendo
del nimero de qubits disponibles en el ordenador cuantico. A cambio se ahorra muchas puertas
al evitar el cardcter recursivo de la puerta (la puerta Toffoli sigue siendo una puerta condicionada
multiple de dos sources que requiere construirse implicitamente).

q0
ql
q2 _
43 U= U]

auxl

fany
A\
fany
A\

fan)
A\
fany

aur2

Figura 4.11: Puerta condicionada multiple con qubits auxiliares.

La matriz y la forma de inversién de la puerta es independiente del disenio. Por lo tanto, en
este segundo disenio solo se modifica la complejidad.

Complejidad (F,,(42)) Vemos que la profundidad para s qubits sources serd de Pgg)a(s) =
2(s —1)(P:(2)) + P, donde P;(2) es la complejidad de una puerta Toffoli de 2 sources y Py =
es la profundidad de la puerta de giro condicionada simple.

ot

Podemos comprobar que, con este segundo diseno, la profundidad es mucho menor que con el
primer diseno, ya que en este caso se tiene una profundidad de O(s) mientras que con el primer
diseno tenfamos una profundidad de O(3%). Se ha elegido el primer diseno como principal debido
a que una de las grandes limitaciones de un ordenador cuantico actual es el niimero de qubits,
por lo que usar puertas que necesiten qubits auxiliares no siempre es una posibilidad. En el
resto del documento el uso del primer diseno se denotard mediante P41y y el segundo diseno
mediante Pgg).

El segundo diseno tiene otra limitacion, que se debe a que construir las puertas Toffoli necesarias
conlleva una gran cantidad de puertas bésicas. Como se demuestra en el anexo el uso del
segundo diseno sera 1til con circuitos mayores de 6 qubits.
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4.3.3.3. Puerta Toffoli

Esta es una puerta condicionada multiple particular. Se toma como puerta independiente
debido a su gran uso, pero en realidad se podria sustituir por una puerta condicionada multiple
de giro X y angulo 7. Esto hace que se comporte como una puerta X NOT (figura de
varios sources, o lo que es lo mismo, una puerta AND sobre su qubit target.

La construccion de esta puerta se puede realizar de la misma forma que las puertas condicionadas
multiples, aunque esto conlleva usar la puerta condicionada X, que es menos eficiente. Por eso el
diseno elegido es el que se muestra en la figura[4.12b] La demostracién de que esta concatenacion
genera este giro se encuentra en la ecuacion

También se puede generar un diseno de esta puerta igual al diseno secundario de la puerta
condicionada multiple, teniendo en cuenta que la puerta Toffoli de 2 sources debe implementarse
explicitamente, ya que es la base de dicho diseno.

q0 —e— ¢0 q0 ——
q2 - q2 ® (q0AN Dq1) 2-o— —Y(m) 2}
(a) Puerta Toffoli. (b) Diseno de la puerta Toffoli.

Figura 4.12: Disenio de puerta Toffoli.

Matriz La matriz es igual que las matrices de las puertas condicionadas miltiples. El ejemplo
de la matriz para la puerta del ejemplo se representa en la matriz

O OO H OO OO
OO OO O oo
_ O OO oo oo
O R O OO o oo

OO OO OO o
OO OO OO+ O
OO OO o+ O O
OO OO = OO O

A pesar de la relativa simplicidad de la matriz solucion, el disenio interno para llegar a dicho
calculo es muy complejo.

Inversién Cualquier puerta Toffoli (para cualquier nimero de source) es su propia inversa,
debido a que se trata de una puerta condicionada multiple de dngulo .

Complejidad (P;) La complejidad de esta puerta depende del niimero de qubits source s.
Podemos ver en la figura {1.12b| que segiin este disefio, Py(s) = 2Pn(s) = O(3%)41) V O(s) 42

(en funcién de la opcién de disenio elegida).

4.3.3.4. Puerta de giro especial

A partir de aqui las puertas son de diseno propio y no existentes en la actualidad.

Esta puerta representa el paso mas importante a la hora de construir una matriz, que se
parametriza mediante dos parametros complejos, que denominaremos a y b. El uso general de
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esta puerta es generar un giro condicionado multiple, donde todos los qubits salvo el dltimo
sean source y el ultimo qubit es el target.

a* b
Se quiere que este giro represente la matriz < > ——L__ Este giro se puede dividir
Vlal?+[b]?

b —a
cos(0)e(—x) sin(@)e(—y))
sin(f)e(y) —cos(0)e(x)
donde =z = fase(a),y = fase(b),0 = sin_l(L) = cos_l(ﬁ). De esta manera

Vlal?+[bf? V/lal?+[b]?

sabemos qué puertas debemos usar para llegar a crear este giro. El circuito para llegar a esta
puerta se muestra en la figura[£.13] Este circuito es generalizable a cualquier niimero de qubits
source (incluido 0 para circuitos con un solo qubit). La demostracién de este diseno se encuentra
en el anexo

a su vez en una matriz parametrizada con tres valores, que es (

q0
ql =
@2 S(b) — —HZ(-y+a+m)}HY20) I Zly+2) o Z(—=2) o Z(-=2) |

identidad

Figura 4.13: Diseno para la puerta de giro especial.

La parte del circuito que aparece en azul en la figura son unas puertas que generan una
transformacion identidad (ver seccién anterior , pero es necesario incluirlas en el diseno de
la puerta. Se usan para forzar a la matriz a coincidir con la matriz esperada, ya que existen
infinitas matrices que representan una misma transformacion.

Matriz La matriz final de este giro con los pardmetros a y b para dos qubits como la mostrada
en la ecuacién [A.4]

[1 0 0 0
01 0 0
a* b*

00 (4.4)

V0P + 102 /laf? + b2
b —a

00
L ViIa? + b Vl]al? +[B* |

Para cualquier nimero de qubits, la matriz serd diagonal exceptuando las dos ultimas filas
y columnas, donde se observara el mismo caso que el mostrado anteriormente.

Inversion Para invertir esta puerta basta con sustituir el pardametro a por a*, o lo que seria
igual, sustituir el parametro x por —z. De esta forma, conseguiremos generar una matriz o}
la matriz equivalente |4.6

a b*

alz + b2 alZ - b2 .
ViaP + 1 ViaP 1o cone) oin0)-1) |y
VREF IR V= TP nO)ety) =eos(@el=2)

(4.5)

De esta manera es facil demostrar que S(a, b)S(a*,b) = I = S(a,b)" = S(a*,b). Se demues-
tra en la ecuacién
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Complejidad (P;) La complejidad de esta puerta depende de si se implementa de forma que
se genere el giro identidad. Para hacer nuestro calculo de complejidad no vamos a anadir esa
parte del disenio, por lo que vemos que Ps(s) = TPy (s) = O(3%) 41)VO(s) 49) siendo s el nimero
de qubits source (normalmente todos menos el ultimo qubit).

4.3.3.5. Puerta de intercambio

Antes de explicar esta puerta, explicaremos primero una cualidad interesante que vamos
a explotar sobre la puerta XNOT, o en general, una puerta Toffoli con cualquier nimero de
sources. Las matrices de este tipo de puertas son matrices donde los elementos de su diagonal
son 1, excepto en dos puntos de la diagonal, donde el elemento diagonal es 0 y el elemento 1
de la misma se ha mowvido hasta la siguiente fila donde la diagonal no es 1. También cuentan
con la propiedad de que, concatenando esas puertas entre ellas, generan matrices con la misma
peculiaridad. Todo ello se puede ver mejor en la figura

q0 —e— q0 —— q0 P

ql —b— ql —— q1 N N>
1 0 0 O 1 0 0 O 1 0 0O
01 0O 0 0 0 1 0 010
0 0 01 0 0 10 01 00
0 010 01 00 0 0 0 1

Figura 4.15: Circuitos de puertas XNOT y matrices asociadas

Estas puertas cuya matriz cumple esta peculiaridad (matriz identidad salvo 2 filas/colum-
nas) cuentan con la caracteristica que, si se implementan rodeando a cualquier otro circuito,
consiguen que su matriz invierta esas filas y columnas entre ellas. Un ejemplo practico se mues-
tra en las figuras y Para ver la demostracién de este efecto véase el anexo
En la figura las puertas X representan una puerta SW AP que intercambia ambos qubits,
que se genera con una concatenacién de X NOT como el tercer circuito de la figura [4.15

1 000 1 000 1 000 1 000
q0 ,_T_‘ 0100 01 00 060100 [01O0O0
1 — U} 0 0 01 00 a b 0001 |00O0dec

0 010 00 ¢ d 0010 0 0 b a

Figura 4.16: Caracteristica matricial de las puertas XNOT.

1 000 1 000 1 000 1 000
q0 * 0 010 01 00 0010 [0aO0WD
ql U] 01 00 00 a b 0100 |0O0T1O0

00 01 00 ¢ d 00 01 0 ¢c 0 d

Figura 4.17: Caracteristica matricial de las puertas SWAP.

Esta caracteristica nos permite mover las filas y columnas de una matriz desde la penultima
y ultima columna (es donde los giros condicionados multiples con el dltimo qubit como target
tienen la submatriz de giro) hasta las filas y columnas que se deseen.
Para ello se usa una concatenacion de puertas Toffoli, de modo que todos los qubits sean target
de alguna de ellas, y se usen todos los demds qubits como source, invertidos en algunos casos
para hacer que cada una de las puertas Toffoli convierta uno de los qubits desde el estado inicial
al estado final esperado.
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En la figura [£.18 se muestra como se construirfa la puerta intercambio que cambiarfa la penulti-
ma fila (|110)) por la primera fila (|000)). Explicado en detalle, el primer paso es modificar el
primer qubit de 0 a 1, por lo que queremos que la puerta Toffoli se active. Modificamos los qubits
que sean 0 por defecto para que activen dicha Toffoli, y tras esto los devolvemos a su estado
original. Asi tendremos el estado [100). Al llegar al segundo qubit, necesitamos que también se
invierta, por lo que activamos la Toffoli (hay que tener cuidado, porque para el primer qubit
hay que tomar su valor ya cambiado y no el original). Al final, vemos que el tltimo qubit no
necesita ser modificado, por lo que esa puerta Toffoli no se incluiria en el circuito.

qO P
g1 —{X] X o |
P S

000) — [100)  [100) — |110)
Figura 4.18: Diseno para la puerta de intercambio entre los estados ldgicos |000) — [110).

La concatenacion del circuito antes y después de otro circuito hard que se inviertan las
filas primera y peniltima. Su matriz se puede ver en la matriz [4.7]

(4.7)

O OO OO oo
S OO+ O OO Oo
SO OO O OO
_ o OO0 oo oo

[elelelalaNel e
[ellelelelBell o]
SO oOoO oo+ O OO
OO OO O oo

Esta puerta tiene un funcionamiento complejo y no existe una forma estandar de represen-
tarla, por lo que se utilizarda una puerta multiqubit, como se muestra en la figura R se usa
como abreviatura de reverse.

gl 4 R:000 > 110 (— = — R(0,6) — = —{X}—+—{X] g
2 - - 4

Figura 4.19: Representacién de la puerta de intercambio entre los estados ldgicos |000) <> [110).

Matriz La matriz solucién de esta puerta es la ya mostrada anteriormente. Todos los elemen-
tos de la diagonal son 1 menos dos de ellos, que son 0, y el valor 1 aparece en la interseccién de
la fila y columna que se estan intercambiando.

Inversion Las puertas de intercambio son su propia puerta inversa.

Complejidad (P;) La complejidad de esta puerta proviene de la complejidad para generar las
puertas toffoli, y depende de la transformacién que se quiera llevar a cabo, ya que cuantos mas
bits se transformen, mas puertas Toffoli necesitard. Por ello vamos a calcular una cota superior
de profundidad para esta puerta, sabiendo que el disefio nunca alcanzard este limite. De esta
manera P;(n) = n(P(n —1) +2(n — 1)) = O(n3"%) 4, V O(n2)(d2).
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4.3.3.6. Puerta de ajuste matricial simple

La puerta de ajuste matricial simple (a partir de ahora AMS) es la transicién entre las puer-
tas compuestas vistas hasta ahora, y la creacién de un circuito que genere una matriz unitaria
dada. Esta puerta modifica un valor dentro de la matriz para generar una nueva matriz donde
ese valor sea 0 (se explicara en la subseccién .

Esta puerta consta de los parametros columna, fila, a, b. Los parametros columna y fila repre-
sentan la columna y fila de la matriz input en la que queremos modificar el elemento, el valor
a representa al elemento que se encuentra en esa misma columna en la diagonal de la matriz,
y el valor b representa el valor del elemento de la matriz sobre el que estamos trabajando. Por
Voo Vo1
vio V11
serian: [ columna=0 fila=1 a=wvg b=1v1g ]

La puerta que vamos a disenar a continuaciéon crea un giro especial con pardmetros a y b, y
traslada la primera columna de este giro (pentltima de la matriz) a la columna columna y la
segunda columna (la tltima de la matriz) a la columna fila. Puesto que tanto las filas como
las columnas son simétricas, si movemos una columna a otra, se mueve también las filas. Esto
aparece representado en la figura El orden de las puertas de intercambio es importante, ya
que podria darse el caso en que columna fuese una de las columnas modificadas por la puerta
de giro especial, y por lo tanto esa operacién alteraria la operacién fila. Por eso siempre se debe
hacer la operacién de intercambio de fila externamente para que no interfiera (no importa que
en el circuito esta puerta se ejecute antes, la que se encuentre més interna modificard antes a
la matriz de la puerta de giro especial).

ejemplo, en la matriz [ ] , si quisiésemos trabajar sobre el elemento v1g, los parametros

q0 i ] ! ] B
. |AMS(e. fa.b)| = |R(,3)] |R(e2)| o 0 R(c,2)| |R(f,3)

Figura 4.20: Disefio de una puerta matricial simple.

Matriz La matriz de esta puerta se asemeja a la matriz de la puerta de giro especial, salvo
que las filas y columnas se han intercambiado para llegar a un punto determinado. Por ejemplo,
la matriz correspondiente a la figura [4.20|siendo ¢ = 0, f = 2 seria como la matriz representada
en la matriz 4.8

- * b* -
a 0 0
Vlal? +[b]? lal? + |b]?
0 1 0 0
) i (4.8)
0 0
Vlal? + b2 lal? + |b]?
I 0 0 0 1]

Inversién La inversién de esta puerta se obtendria invirtiendo la puerta de giro especial que
contiene, como se demuestra en la ecuacién

Complejidad (P.n,s) La profundidad de esta puerta es Pyps(n) = 4(Pi(n)) + Ps(n — 1) =
O(n3%) 4y Vv O(nz)(dQ) siendo n el nimero de qubits.

4.3.4. Circuitos de ajuste a una matriz

Estos circuitos o puertas compuestas trabajan ya sobre una matriz inicial dada y generan
el circuito interno que es capaz de llegar a dicha matriz.
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4.3.4.1. Puerta de ajuste diagonal

Esta es la primera puerta que trabaja sobre una matriz input y la transforma en un circuito
capaz de generar dicha matriz. En este caso solo resolveremos el problema para una matriz
diagonal.

En este caso, el disenio elegido para esta puerta es la concatenaciéon de puertas de giro Z
condicionadas multiples donde el target sea el dltimo qubit y el resto de qubits sean source,
cuya solucién seria una matriz diagonal en la que el ultimo elemento se ha sustituido el valor
con el que se haya parametrizado el giro. Este giro se rodea con puertas de intercambio para
que el valor del giro se coloque en la posicién de la matriz que queremos modificar. Este paso se
repite para cada uno de los elementos de la matriz diagonal y de este modo se genera el circuito
cuyo funcionamiento tedrico representa la matriz input. La demostracion matematica de esta
puerta se puede ver en el anexo [C.7]

En la figura (R : x representa R(3,z)) se hace un ejemplo muy simple con 2 qubits que
corresponda al circuito que genera la matriz

ey 0 0 0
0 eB) 0 0
0 0 €~ O (4.9)
0 0 0 0
DV rool T R0l R | b (Re| [Re2| o1 | Re2
al—+ Z(a) B o B Z(P) B o B Z(7) ' Z(9)

Figura 4.21: Disenio de puerta de ajuste diagonal para 2 qubits.

La matriz de este tipo de puertas que trabajan generando matrices, ya sean diagonales o
completas, sera la matriz que se esta buscando.

No tendria sentido hablar de puerta inversa, ya que este circuito es en si un constructor de
una matriz, y no se necesita conocer su inversa (esta se darfa invirtiendo las puertas de giro).

Complejidad (FP;) La complejidad de este circuito para n qubits serd de Py(n) = N(P,,(n—
1) +2P;(n)) + Pp(n — 1) = O(Nn3") 4y V O(Nn?) o) siendo N = 2".

4.3.4.2. Puerta de ajuste matricial

Esta es la ultima puerta necesaria para la generalizacion del problema. Con ella conseguimos
generar un circuito con una profundidad acotada superiormente y cuya funcionalidad se ajusta
a una matriz dada como parametro de la puerta.

Esta puerta concatena puertas AMS para cada uno de los valores distintos de 0 que se encuentren
debajo de la diagonal de la matriz input, ordenando dichas puertas para ir recorriendo la matriz
por columnas de izquierda a derecha y de arriba a abajo. Esto va generando circuitos que al
concatenarse, generan la matriz final a la que se quiere llegar[7].

El objetivo es, para una matriz M dada, encontrar U; tales que Vi — U; sea una matriz unitaria
y diagonal exceptuando dos filas y dos columnas. Esto quiere decir que cada puerta U; es una
matriz generable por una puerta AMS. Entonces, partiendo de M, podemos calcular UgM = Vj,
donde Vj es una matriz similar a M pero donde uno de sus valores se ha transformado en 0.
Este procedimiento se repite hasta m veces, siendo m el niimero de valores distintos de 0 debajo
de la diagonal. A partir de la ecuaciéon 4.10| vemos la concatenacién de matrices que debemos
realizar para obtener M, con un limite de m calculado en la ecuacion

28 SECCION 4: ALGORITMO DE DISENO MATRICIAL DE CIRCUITOS CUANTICOS



Algoritmo de Diserio Matricial de Circuitos Cudnticos

0 m
[Twm=1= m=T]uf (4.10)
i=m =0
N—-1
N2 - N
m < Z(N—z'):T (4.11)
=1

De esta manera, concatenando las puertas AMS UZT obtendremos un circuito cuya matriz
solucién sea la dada.
Con este diseno, en una matriz donde una columna entera bajo la diagonal tenga valores 0, el
valor de dicha columna en la diagonal no sera obligatoriamente 1. Para evitar usar una puerta
AMS para modificar un tnico valor en la diagonal, usaremos la puerta de ajuste diagonal. De
esta manera, ahorraremos dos puertas de intercambio en cada punto de la diagonal que haya
que modificar, y usaremos una puerta condicionada multiple en vez de una puerta AMS (mucho
mas costosa).

El ejemplo general para cualquier circuito de 2 qubits se puede ver explicado matemaética-
mente en mientras que un ejemplo de uso se puede ver en el anexo [E]

Complejidad (Pys) El limite superior de complejidad de este circuito para n qubits serd de
la mostrada en la ecuacién [£.12 siendo N = 27,

N2 - N

Py(n) = 5

(Pams(n)) + Pa(n) = O(N*n3"~1) = O(n6") ) V O(N?n?) = O(22n%)
(4.12)

4.3.5. Resultado del algoritmo

El resultado del algoritmo QCMD es obtener un circuito de puertas basicas para generar
una matriz dada. Por lo tanto, la puerta de ajuste matricial es la solucién de dicho algoritmo.
Esto quiere decir que, para una matriz dada, podemos generar una puerta de ajuste matricial
que se adapte a dicha matriz, y el circuito necesario para implementar dicha puerta serd el
circuito solucién buscado.

4.4. Complejidad total

El valor real de la cota superior del disenio se calcula despejando el ntimero real de puertas
maximo que se usara en cada caso, teniendo en cuenta que las puertas basicas tienen profundidad
1. Por lo tanto, para n qubits podemos despejar la tablas para el disefio 1. Hay que tener en
cuenta la diferencia entre s, nimero de qubits source y n, niumero de qubits total. Las puertas
con s = 3 seran en realidad puertas sobre 4 qubits.

Para el diseno 2 se ha tomado como disefio de la puerta Toffoli de dos sources como la
representada en la figura [4.12b| con complejidad P;(2) = 2(P,(2)) = 2(17) = 34, y en la tabla
se ve el célculo completo de complejidad.

Vemos como el segundo diseno empieza a ser efectivo con puertas de giro condicionadas
multiples de mas de 5 qubits, pero como la puerta Toffoli reduce su complejidad, el circuito
final serd mas eficiente con el diseno 2 por encima de 4 quibts. Célculo recogido en el anexo
m(célculo segun la complejidad, no segin el nimero real de puertas).
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puerta E;il;pleﬂdad ﬂ;i?ij@?; 3 qubits 4 qubits 5 qubits 6 qubits
bésica o(1) 1 1 1 1 1
giro condicionado  O(1) 5 5 5 5 5
giro condicionado ) 3, 99 352 66 198 594 1782
multiple (s)
toffoli (s) 0(3°) 44 . 352 132 396 1188 3564
giro especial (s) 0(3%) 154 - 3572 462 1386 4158 12474
intercambio (n) O(n3™) 44n - 33 132 528 1980 7128
AMS (n) O(n3") 176n - 373 | 528 2112 7920 28512
diagonal (n) O(n6") 97881373 | 2112 16896 126720 912384
2n
matricial (n) O(n12") §n71376n 33792 540672 8e(6) 1e(8)

Tabla 4.1: Calculo de complejidad y profundidad maxima (simplificada al maximo componente).
para el diseno 1

puerta Ez;r)lplejldad pmr;)}f{?;(il((ig()i 3 qubits 4 qubits 5 qubits 6 qubits
bésica 0(1) 1 1 1 1 1
giro condicionado  O(1) 5 5 5

giro condicionado ) 685 204 9279 340 408
multiple (s)

toffoli (s) O(s) 68s 204 272 340 408
giro especial (s) O(s) 476s 1428 1904 2380 2856
intercambio (n) O(n?) n68(n — 1) 408 816 1360 2856
AMS (n) O(n?) n272(n — 1) 1632 3264 5440 11424
diagonal (n) 0(2"n2)  2"nl136(n — 1) 6528 26112 87040 731136
matricial (n) O(22"n?) 22"n272(n — 1) | 104448 835584  5e(6) 3e(7)

Tabla 4.11: Célculo de complejidad y profundidad méxima (simplificada al maximo componente)
para el diseno 2

Un dato que debemos tener en cuenta es que la construcciéon de la puerta Toffoli puede
reducirse en gran medida a un diseno mas eficiente, variando altamente los valores obtenidos. Y
los valores obtenidos variarian més atn si se pudiese contar con una puerta Toffoli implementada
fisicamente. En la tabla [{.IT]] se resume los valores de profundidad que resultarian de este
algoritmo para el disenio 2 si la construccion de la puerta Toffoli fuese constante. Se puede ver
como los valores y las complejidades se reducen vertiginosamente, y a esto se suma el hecho de
que solo seria necesario 1 qubit auxiliar.

4.5. Mejoras

La complejidad total de todo el disefio del circuito tiene un caracter exponencial. Este
crecimiento es insalvable siempre que el diseno de construccion se base en crear uno por uno los
valores de la matriz, ya que el tamano de la matriz crece de manera exponencial con el nimero
de qubits.

Por lo tanto, las mejoras referidas a este algoritmo QCDA se podrian aplicar a mejorar ciertas
puertas (al igual que el segundo disefio de la puerta condicionada miltiple) y a acotar y hacer
mas eficientes cada uno de los pasos del algoritmo. Pero nunca se reduciria el nivel exponencial
del mismo O(22"). Existen otras vias para llegar a construir un circuito desde su matriz, como
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puerta ((:((i)g;plej idad Ef;}f(?;il(?;? 3 qubits 4 qubits 5 qubits 6 qubits
bésica O(1) 1 1 1 1 1
giro condicionado  O(1) 5 5 5 5 5
giro condicionado

multiple (s) oQ) 7 7 7 7 7
toffoli (s) 0(1) 1 1 1 1 1
giro especial (s) O(1) 37 37 37 37 37
intercambio (n) O(n) 3n 9 12 15 21
AMS (n) O(n 12n 36 48 60 84
diagonal (n) O(2™n) 2"3n 72 192 480 2688
matricial (n) O(2%n) 4nH13p 2304 12288 61440 le(6)

Tabla 4.I1I: Célculo de complejidad y profundidad méaxima para el diserio 2 con puerta Toffoli
constante

seria de Descomposicién de Schmidt[I0], pero estas se referirfan a un cambio en la idea
principal de este algoritmo y a su base de funcionamiento, por lo que se podria considerar como
algoritmos diferentes.
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Implementacion empirica del algoritmo

En este capitulo se incluye un resumen de un programa implementado para la demostracién
empirica del algoritmo QCMD vy las pruebas realizadas sobre el mismo.

5.1. Implementacion y simulador propio

En esta seccién se va a explicar un programa implementado para generar el algoritmo

QCMD. Este programa se ha escrito en lenguaje Python y simula el funcionamiento del al-
goritmo, generalizado a cualquier matriz unitaria y cualquier niimero de qubits de entrada. La
salida generada es un fichero .qasm (extensién del archivo escrito en ensamblador cudntico para
el ordenador de IBM).
Este programa no ha sido disenado para presentar una implementacién eficiente del algoritmo,
sino que se ha pensado para ser una demostracion empirica del funcionamiento del mismo. Mas
adelante podria contemplarse la idea de crear una libreria para hacer aplicable dicho progra-
ma como un ejecutable o un sistema interno para desarrollar un escritor automatico de cédigo
quantum assembler o qasm.

Este programa esta publicado en un repositorio de GitHub y es publico y accesible para cual-
quier persona que quiera ver su contenido. Este repositorio cuenta con varios scripts auténo-
mos que ejecutan dicho algoritmo autométicamente (segun varios pardmetros) y demuestran
empiricamente su funcionamiento mediante pruebas contra un simulador externo o contra un
ordenador cuantico real (IBM-Q).

La direccién para clonar el repositorio es:
https://github.com/jpUhryn/Quantum-Circuit-Matricial-Design-Algorithm.git

(Eeste cddigo se ha escrito y comentado en inglés.)
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5.1.1. Diseno

El diseno que se ha elegido basa su funcionamiento en dividir el circuito en las mismas
puertas que se han visto con anterioridad en la seccién
Todas estas puertas se guardan en un diccionario, mapeadas por un id Unico que se va asignan-
do segun se van generando dichas puertas. Cada puerta cuenta con una matriz que la representa
y un path que guarda los ids de las puertas que se han concatenado hasta llegar a ella. Cada
vez que se crea una nueva puerta, el programa genera el path necesario para construirla, y
recursivamente va generando las puertas inferiores necesarias que no hayan sido creadas aun.
Una vez creadas todas las puertas que se necesiten, se genera la matriz de la puerta, multipli-
cando las matrices de las puertas inferiores (las cuales a su vez se han generado multiplicando
las anteriores). Las unicas matrices que se generan automdticamente son las que representan
las puertas bésicas (aquellas que no se consiguen por concatenacién), por lo que el resultado
final de implementar un circuito desde una matriz es realmente la matriz del circuito. De esta
manera, en el caso de la puerta de ajuste matricial, sabemos que la matriz de dicha puerta es
la generada por el circuito y no la dada como parametro de entrada.

Para ahorrar tiempo de ejecucion, se ha diseniado un sistema de programacién dinamica
donde, a la hora de buscar si una puerta estd ya creada o no, utiliza un sistema de diccionarios,
donde el primer diccionario contiene como clave cada uno de los distintos tipos de puerta, y
cada elemento del diccionario es a su vez un diccionario que se mapea mediante un parametro
de la puerta. Estos diccionarios contienen en su ultimo atributo el id de una de las puertas
que responde a todos los parametros. Si uno de los parametros ain no ha sido incluido en el
diccionario indica que esta puerta ain no existe, y se auto genera esa rama para incluir dicho
1d. De esta manera se puede saber rapidamente si una puerta existe ya, y si no crearla e instan-
ciarla en el diccionario automaticamente. De esta forma se reduce el tamano del diccionario (si
contuviese todos los pardametros desde el principio tendria una dimensién demasiado grande, y
si no se guardasen las puertas se harian demasiadas llamadas recursivas a creaciéon de puertas
simples), reducir el tiempo de busqueda y evitar generar una puerta que ya existe. El tinico
punto importante a la hora de trabajar con este diccionario de diccionarios es saber que el
orden de los parametros para cada tipo de puerta siempre debe ser el mismo.

El pseudocddigo resume el funcionamiento de la creacién de una puerta en el programa.

crearPuerta(tipo, parametros, diccionario):

#puerta a buscar
nuevaPuerta

if nuevaPuerta en diccionario:
#si ya existe se devuelve la existente

return nuevaPuerta.id

#si no existe se genera
else:

# lista de puertas necesarias para crear la puerta actual
circuitoNecesario = generarCircuito (parametros)

# puertas que generaran la puerta buscada
circuito = listaVacia

for puertaNecesaria en circuitoNecesario: #para cada puerta necesaria

!Esta implementacién tiene algunas diferencias debido a que el algoritmo ha ido evolucionando desde que se
implementd. Por ejemplo, no existe la puerta diagonal. Ademas la implementacién sigue inicamente el diseno 1.
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# si existe ya devuelve el id, si no crea la puerta y devuelve el nuevo id
circuito.annadir (crearPuerta (puertaNecesaria , parametros, diccionario))

#crea la matriz mediante las matrices inferiores
nuevaMatriz = crearMatriz (circuito.matriz)

#annade la nueva puerta al diccionario
nuevold = diccionario.annadir (nuevaPuerta, parametros, nuevaMatriz,
diccionario)

#devuelve el id de la nueva puerta
return nuevold

Listing 5.1: Pseudocédigo de funcionamiento

5.1.2. Complejidad

El cédlculo més pesado en un programa que tenga funcionalidad de simulador cudntico es a
la hora de multiplicar las matrices, ya que esto equivale a una complejidad de O(N?3) siendo N
el tamano de la matriz.
Mediante el uso del diccionario (reusando puertas) se ahorra tiempo evitando generar varias
veces la misma puerta, lo cual puede llegar a hacerse pesado en aquellas con mucha profundidad;
y también evita la multiplicacién excesiva de matrices, ya que una vez se haya generado una
puerta no es necesario volver a recalcularla. Con este disefio también nos aseguramos que cada
puerta estd generada correctamente, ya que su matriz no se toma de su definicién si no que se
calcula (exceptuando el caso de las puertas bésicas).
Por lo tanto, se tiene un programa que funciona a la vez como implementacion del algorit-
mo QCMD y como simulador de un ordenador cuantico, cuya complejidad total depende del
nimero de puertas inferiores que necesite la puerta en construccion. Esto da una complejidad
de

0(23n . 2nn3n71) — 0(24nn3n71)

siendo n el nimero de qubits.

Seria facil eliminar de este disefio el apartado de multiplicacién de matrices, usado como for-
ma de depurar la salida obtenida, y de esta manera el programa seguiria funcionando reduciendo
su complejidad, pero sin opcién a conocer la solucién del circuito creado.

5.1.3. Interfaz

El programa basa su funcionamiento en recibir el tipo y los pardmetros de un tipo de puerta
en concreto, y un diccionario sobre el que trabajar. Como salida devuelve el id de la puerta
solucién, y en el diccionario se encuentran todas las puertas inferiores que se han utilizado. A
través de este id se puede visualizar la matriz, el path de los ids de las puertas directamente
inferiores y escribir dicha puerta en coédigo gasm, el cual se genera de manera automatica y
recursiva, entrando desde el diccionario en cada puerta hasta llegar a una puerta basica, la cual
escribe su instruccion o instrucciones ensamblador.

# inicializa un sistema de diccionarios para 4 qubits
dic = DictionarySearcher (nQubits=4)
genera una puerta de giro condicionado multiple y las subpuertas necesarias
gateld = AQP.generateMultipleTurn (sources=[0,1,2], target=3, angle=math.pi/2,
turnType=TurnType.Z, dic=dic)

# genera el fichero .qasm para crear esta puerta
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WriterAsm . writeAsm (gateld , dic, "multiConditionalGate.qasm”, reset=True)

Listing 5.2: Ejemplo bésico de uso (faltan librerias e inicializaciones)

// Assembler file: multiConditionalGate.qasm for id: 35 //

OPENQASM 2.0;

include ”qelibl.inc”;
qreg q[4];

creg c[4];

// X-NOT — source: 2 target: 3 //

cx q[1], q[0];
// XNOT — source: 2 target: 3 //

// Basic Turn — Z target: 3 angle: 5.890486225480862 //
ul (5.890486225480862) q[0];
// Basic Turn — Z target: 3 angle: 5.890486225480862 //

Listing 5.3: Estracto del cddigo .qasm obtenido

En el codigo se puede observar un uso simple de dicho programa (se han omitido imports

y demds configuraciones anteriores) para generar una puerta de giro condicionado miltiple con
3 qubits sources, y un angulo de 7/2 sobre el eje Z. En el c6digo mostrado en se puede
apreciar por los comentarios que los qubits del circuito se invierten para concordar con los
estandares tomados para el compilado de .qasm. Las matrices y resultados no se ven afectados,
solo se modifica el hecho de elegir el qubit mas significativo.

5.1.4. Otros Posibles Disenos

Prescindir de las matrices: Se puede evitar guardar cada matriz de cada puerta ya
que se conoce la solucién esperada para cada puerta. De esta manera se ahorraria una
gran cantidad de memoria y procesamiento al evitar la multiplicacién. Este disefio no
permitiria comprobar de forma eficiente la funcionalidad del algoritmo.

Usar funcionalidad gasm: El lenguaje gasm cuenta con un método de creacién de
funciones para evitar repeticiones de puertas. Esto podria disminuir el tiempo a la hora
de escribir el fichero .qasm. Esto no variaria el niimero de puertas final a ejecutar sobre
el ordenador.

Automatizar diseno de nuevas puertas: Se podria implementar el diccionario pa-
ra que permitiese incluir nuevos tipos de puertas en tiempo de ejecucién, tomando los
parametros como un array o diccionario.

Implementar el disenno 2: Implementar el diseno 2 del algoritmo permitiria una efi-
ciencia en profundidad mucho mayor. Este nuevo diseno requeriria aumentar el nimero
de qubits de la matriz de forma exponencial, y por lo tanto seria ineficiente a la hora de
tener que aguantar el cdlculo de la multiplicaciéon de matrices mayores. Esto podria imple-
mentarse solo si se usase también el nuevo disefio comentado prescindir de las matrices.

Revisar eficiencia de las puertas: Las puertas se han generado mediante un diseno
que obtuviese la solucién esperada, pero no de la manera mas eficiente posible. Estos tipos
de puerta se podrian redisenar para encontrar una solucion més rapida y eficiente. Por
ejemplo, en la puerta de giro especial, estd integrado el uso de la operacién identidad para
que la matriz sea la esperada.
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5.2. Pruebas con IBM-Q

Todas las pruebas aqui mencionadas se pueden llevar a cabo descargandose el cédigo del
repositorio y lanzando los scripts siguiendo las instrucciones de los mismos.

5.2.1. Simulador

Se ha diseniado un programa ejecutable en Python donde, dando una matriz deseada, calcula
el circuito asociado. Tras esto, genera el fichero .qasm donde recoge el circuito de dicha puerta,
y lo ejecuta en un simulador local incluido en la API QISKit, libreria OpenSource desarrollada
por IBM para el uso del computador cuantico desde la nube. De esta ejecucién obtenemos la
matriz que representa a dicho circuito, y asi podemos contrastar que la solucién es la esperada,
y con esto podemos demostar que el algoritmo funciona de forma tedrica.

El programa relativo a esta ejecucién y sus distintos tipos de prueba se puede ver en el
anexo Este cédigo compara las matrices generadas por el programa propio, o en el caso de
las puertas de ajuste matricial, las matrices que se desean generar, con las matrices que genera
dicho cédigo .gasm en el simulador de IBM. Se usa la funcién allclose de la libreria numpy para
comparar dichas matrices y evitar el error de las operaciones en coma flotante con un error
relativo de e-8 y un error absoluto de e-5 (valores por defecto de la funcién allclose de numpy).
La salida de dicho programa es una recopilacién de todas las pruebas, donde se muestra si las
matrices generadas y las simuladas son las mismas.

5.2.2. Ordenador

Para demostrar empiricamente el funcionamiento del algoritmo, se ha disenado un programa
que prueba la eficiencia del algoritmo sobre el ordenador real. Este programa prueba la puerta
de intercambio y la puerta de ajuste matricial para una matriz determinada para cualquier
nimero de qubits. Se han elegido estas dos puertas debido a que el estado inicial del ordenador
es el estado |00...,0) de menor energia, por lo tanto cualquiera de las otras puertas no afectarian
a dicho estado.

Las gréficas y representa una ejecucién de dicho programa, en el cual se puede ver
una simulacién exacta del resultado teérico de un ordenador cudntico (azul), una simulacién
aleatoria mas semejante al comportamiento esperado del ordenador (amarillo) y las mediciones
reales llevadas a cabo en el ordenador cudntico de IBM. En la Grafica [5.1] el circuito que se ha
simulado es un circuito generado por el algoritmo QCMD para la construcciéon de un estado
inicial superpuesto para los valores |00) y |11), y se ha generado mediante una puerta de ajuste
matricial con input la matriz

- 1 1 -
V2 V2
0 10 0
0 01 0 (5-1)
1 1
0 0 ——=
L V2 V2

En la Gréfica el circuito que se ha simulado es un circuito de intercambio de estados en
3 qubits, del estado |000) al estado |101), que equivale a la matriz
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Figura 5.1: Resultados del ordenador cuantico para un circuito de 2 qubits.
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Figura 5.2: Resultados del ordenador cudntico para un circuito de 3 qubits.
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Se puede ver facilmente como el resultado dado por el ordenador cudntico tiene una tasa
de error muy alta, aunque se puede apreciar que los estados solucién cuentan con una pequena
probabilidad superior al resto de estados.

También se puede ver que con mayor numero de qubits, el error de la medicién aumenta.
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Conclusiones y trabajo futuro

6.1. Conclusiones

La computacién cudntica es una rama de investigacion atin en sus inicios, con una comple-
jidad matematica, fisica y computacional muy alta, y con un gran horizonte de posibilidades
aun por abrirse.

Una de las conclusiones de este trabajo de fin de grado ha sido conocer su funcionamiento,
y conocer sus diferencias con respecto a un ordenador légico. Las leyes fisicas que rigen su
funcionamiento, que son aquellas que ofrecen tan alta potencia de cédlculo a este paradigma
computacional, al mismo tiempo son las mismas que le impiden comportarse como una compu-
tadora légica usual. Los principios de no almacenamiento y no copia de informacion limitan en
cierta medida las posibilidades de estas maquinas.

Pero a pesar de estas limitaciones, se trata de maquinas que son capaces de realizar calculos
en segundos donde una maquina légica necesitaria mas tiempo que la edad misma del universo.
Por lo tanto, puede que no sean las sustitutas de los ordenadores actuales, pero seran igual de
necesarias en el mundo moderno.

El algoritmo disenado y explicado en este trabajo no es mas que una primera aproximacién
a un algoritmo posiblemente necesario en un futuro para todos aquellos que quieran hacer uso
de la computacién cudntica. Es una idea inicial de como abstraer el problema de generar un
programa cuantico, desde el estado actual de la programacién cuantica, que es usando direc-
tamente instrucciones sobre el hardware, a una idea mas generalizable y puramente tedrica de
nivel software. El algoritmo disenado abstrae por completo el problema de la programacion o
implementacién real del algoritmo, reduciendo el problema de la algoritmia al campo puramente
matematico.

El estado actual de la computacién cudntica limita en gran medida el uso de este o cualquier
otro algoritmo cudntico. Pero cualquier avance software sobre ella servird para acortar el futuro
camino que se debera recorrer para encontrarse a la par con el desarrollo y mejora del hardware
de dicha tecnologia.
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6.2. Trabajo futuro

El algoritmo propuesto en este trabajo no estda optimizado para ser eficiente, y también
cuenta con la desventaja de su complejidad exponencial. Pero a pesar de estas limitaciones, es
una demostracion empirica de que cualquier resultado matricial puede ser programable en un
ordenador cudntico con un limite méximo de operaciones requeridas; y es una primera aproxi-
macion necesaria para la abstraccion del uso de dicho ordenador.

Por lo tanto, el trabajo futuro de este algoritmo podria dividirse en tres puntos importantes.

En primer lugar, se podria ajustar la eficiencia de cada una de las puertas intentando re-
ducir su cota maxima, lo que resultaria en un algoritmo de similar complejidad maxima, pero
disminuiria mucho el nimero de puertas en un disefio real.

En segundo lugar, se podria mejorar dicho algoritmo buscando patrones de matrices cono-
cidas para evitar su construccion si ya existe una implementacién eficiente de la misma.

En tercer lugar, se podrian buscar nuevas formas de dividir una matriz unitaria para su
creacién, haciendo asi que disminuya la complejidad total del algoritmo.

En conclusién, este algoritmo (al igual que la computacién cudntica) se encuentra en un
estado inicial, que requiere de maés estudio e innovacién. Pero es un importante primer paso
para generalizar y abstraer el uso de la programacion cuantica.
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Algoritmo de Grover

El Algoritmo de Grover es un algoritmo cuantico para la bisqueda de un elemento en
una secuencia no ordenada de datos.

Este algoritmo, junto con el Algoritmo de Shor para la factorizacién de niimeros, son los
algoritmos cuanticos mas conocidos, debido a su utilidad a la hora de agilizar célculos actual-
mente complejos para la computacién légica.

Este algoritmo recibe su nombre del cientifico de la computacién Lov Kumar Grover (nacido en
1961) a quien se atribuye su invencién en 1996.

Este algoritmo es famoso debido a que consigue una complejidad O(v/N) al buscar un
elemento en una cadena de N elementos no ordenados cuando un algoritmo de computacion
légica no puede bajar de una complejidad O(N)[17].

A.1. Flujo

El algoritmo de Grover es un algoritmo iterativo generalizable a cualquier nimero de qubits,
que basa su funcionamiento en tres pasos. La idea principal es partir de un estado de superpo-
sicién donde todas las cadenas de bits tengan la misma probabilidad de ser medidas, y aplicar
iterativamente un oraculo, que es una funciéon que invierte aquella cadena que se esta buscan-
do; y un amplificador de amplitud, que aumenta la probabilidad de medir aquellos valores
que se encuentran en negativo.

A.1.1. Estado de superposicion

El primer paso es inicializar el estado principal a un estado de superposiciéon. Esto es,
un estado donde todos los qubits se encuentren superpuestos (igual probabilidad de ser 0 y 1).
Para esto, se utiliza una puerta Hadamard para cada uno de los qubits, convirtiendo el estado
de minima energfa |00..,0) en un estado de superposicion |+ + .., +).
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A.1.2. Oraculo

Esta parte de la iteracién es particular para cada elemento a buscar, y representa la funcién

de busqueda. Esta funcién debe tener la peculiaridad de que f(x) = 1 para todos aquellos
valores que se estdn buscando, y f(z) = 0 en otro caso.
Lo que se busca es usar una funcién (U| sobre un estado cualquiera |z) de tal forma que
(Uylz) = (=1)/@) |z). De esta forma, aquellos estados que activen o devuelvan un 1 en la fun-
cién, sufrirdn una inversién de signo (recordar que esto no afecta a su amplitud, ni, por lo tanto,
a su probabilidad).

A.1.3. Amplificacion de Amplitud

Esta parte del algoritmo es generalizable para cualquier bisqueda para el mismo ntmero de
elementos. Lo que se busca con esta amplificacién es devolver los estados negativos a un valor
positivo, y a la vez aumentar su amplitud, disminuyendo asi la de las demas cadenas.

A.1.4. Iteracién de Grover

Debido al caracter probabilistico de la computacién cudntica, no podemos estar seguros de
que vayamos a llegar al resultado esperado (un estado donde la funcién tenga valor 1). Por eso
el algoritmo aplica de manera recursiva al estado de superposicién la transformacién oraculo y
amplificacién de amplitud. De esta manera, con O(\/ﬁ ) iteraciones, podemos estar seguros
de que al medir encontraremos el elemento buscado.

A.2. Variantes

Variante 1 Existe una variante de Grover que es menos conocida que el algoritmo general, que
se basa en la bisqueda sobre mas de un elemento. El algoritmo se usa generalmente con
funciones cuyo valor es 1 para un tnico valor. Esta variante incluye la variable k que representa
el nimero de valores en el dominio de la funcién que tienen como resultado 1.

Esto hace que aumente la probabilidad de encontrar uno de entre todos estos valores, mas

|N
especificamente, con repetir la iteracién O( ?) veces obtenemos la misma probabilidad que

al buscar un solo elemento.
Esta variante tiene un inconveniente, que es que la mayoria de las veces no conoceremos el valor
k (porque no conocemos la funcién a priori).

Variante 2 Existe otra variante de Grover que no se ha encontrado en la bibliografia, que se
basa en la busqueda sobre un subconjunto.

Esto se consigue modificando la funcién de amplificacién de amplitud para que no modifique
aquellos estados que no intervienen en la busqueda.

Pero esto genera que aquellos estados sobre los que no se busque tendran una probabilidad alta
de obtenerse como resultado, ya que no se aumenta su amplitud pero tampoco se reduce.

Esto se solventa usando un estado inicial de superposiciéon donde las cadenas sobre las que
no se busque no se introduzcan como indice. Esto no se puede conseguir de una forma trivial,
ya que conseguir un estado de superposicién es facil usando puertas Hadamard, pero para
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conseguir un subconjunto de estados que tengan la misma amplitud solo se puede conseguir
mediante la creacién de un circuito anterior que convierta el estado inicial en el estado deseado.
Si el subconjunto sobre el que se trabaja es facil de dividir por sus qubits (por ejemplo solo
los valores pares o los impares, ya que solo se diferencian en el tltimo qubit) entonces esta
transformacion es trivial, bastaria con no superponer dicho qubit. Pero en cualquier otro caso,
el estado de superposicion se alcanza mediante entrelazamiento de distintos qubits, dificil de
alcanzar de forma manual, y conseguido de forma automatica con un algoritmo de diseno de
circuitos mediante matriz.

A.3. Motivacion

Este algoritmo se puede usar como un algoritmo de biisqueda sobre un conjunto desordenado

con una complejidad inalcanzable en un ordenador 16gico (no paralelizado). Otra aplicacién del
algoritmo es encontrar la funcién inversa a una funcién dada, ya que el algoritmo nos permite
averiguar para que valores la funcién tiene resultado 1 sin tener que recorrer todos los posibles
valores.
Existe el problema de que el oraculo es dificilmente implementable, ya que su utilidad reside en
que la funcion es desconocida. Por eso, en muchas ocasiones, si se quiere construir esta funcién es
necesario conocer previamente su resultado para todos los valores, lo que hace que el algoritmo
pierda su utilidad. Por eso su uso por ahora es muy limitado, aunque existen estudios sobre la
obtencién de un oraculo sin necesidad de recorrer todos los posibles valores.

Este algoritmo ha motivado la idea principal de este Trabajo de Fin de Grado. Se conoce

matematicamente la implementacién y las matrices que dan su funcionalidad al algoritmo de
Grover (la matriz del ordculo y la matriz de la amplificacién de amplitud) pero hasta ahora no
existia (o no se ha encontrado tras una exhaustiva investigacion, ver capitulo [2|) una manera de
conseguir un circuito que implementase una matriz concreta.
Es cierto que existian medios maés eficientes que el algoritmo propuesto en este trabajo para
generar los oraculos y la amplificacién de amplitud, pero no existe la forma de generalizarlo para
cualquier matriz, lo cual es muy interesante a la hora de construir las variantes del algoritmo
descritas previamente, o cualquier otro algoritmo cuya matriz o matrices sean conocidas.
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A.4. Demostraciones matematicas sobre el algoritmo de Grover

Para llevar a cabo estas demostraciones, entre las cuales se encuentran demostraciones en-
contradas y célculos propios, se ha buscado mucha informacion en diferentes puntos de la bi-
bliografia. [20][21]

A.4.1. Modelo basico

Este modelo representa una biisqueda de un elemento sobre una cadena de N elementos no
ordenados, siendo N = 2" y n el nimero de qubits del circuito.

La cadena a buscar se representa mediante el estado |w) = (0,0..,1..,0,0)".

1
El estado |s) = (1,1..,1, 1) — representa el estado de superposicién de todos los qubits.

VN

La transformacién (U, | representa el ordculo de Grover para el estado w, representado en
la ecuacion [ALT]

La transformacion (U,| representa la amplifiacién de amplitud, representado en la ecuacién

(Uu| = (I] = 2|w) (w] (A1)

(Ual = 21s) (s = (1| (A.2)
El estado |s’) representa el vector perpendicular a |w).

1
=(1,1..,0..,1,1)——— A3
( ) B (A.3)

1
/
S $) VN — |w)) ——
A continuacién se recogen los productos vectoriales entre estos estados. el producto (wls)
representa la amplitud del estado |w) sobre |s), lo que implica que (w|s)? es la probabilidad de

medir |w).

1
(wls) = i (A.4)
<w‘s'> =0 (A.5)
(sls) = ]\jj—\_f ! (A.6)

Estas ecuaciones representan las transformaciones que se realizan sobre cada uno de los
estados, para mas tarde realizar un calculo de una primera iteracién de Grover.

(Uslw) = (Iw) = 2|w) (w|w) = |w) = 2|w) = —|w) (A7)
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(Uo|s'y = (I]s') = 2|w) (w|s") = |s') =0 =|s) (A.8)

(Vels) = (L) =21} ) = Ia) =2} = = Io) = = o) =
(1111, 1)& — |z0) (A.9)
(Ul = 21) () = {T1e) = <o) o) (A.10)
(Uals) = 21s) {sls) — (113} = |5 (A1)

A continuacién se muestra como resultaria la primera iteracién del algoritmo (ordculo mas
amplificador de amplitud) sobre el estado |s).

4 2
W |s) <S\W>—(I\S>+ﬁ {lw) =

(1= 3 )19+ ) =l (a12)

Como se calcula en segtin el resultado de podemos ver que la probabilidad de
3N —4

NvVN '

{yols) = % (A.13)

(UaUss) = (Ualzo) = 21s) (slzo) = (Ixo) = 2[s) (s]s)—

obtener w tras la primera iteracion de Grover se ha aumentado de N @

Se puede demostrar el funcionamiento del algoritmo de Grover mediante una visién geométri-
ca del mismo. En la figura se ve representados los estados |w) y |s’) perpendiculares, y el
estado |s) entre medias. Sabemos que |s) tiene que encontrarse en el mismo plano que generan
los otros dos estados, asi como cualquier punto intermedio |y;) resultado de una iteracién del
algoritmo, ya que |s) puede representarse mediante una combinacién lineal como se muestra en
la ecuacién [A-T4] y las transformaciones que se llevan a cabo modifican a y b, lo que mantiene
ly;) en el mismo plano.

1 | vN —1
— W)+ ——
vN VN

Como vemos en la figura el oraculo de la funcién genera una inversion del estado al
que se aplique con respecto al eje |s), y la amplificacién de amplitud genera una inversién con

respecto al eje |s). De esta forma, vemos que en cada iteracién de grover, la amplitud del estado
|w) aumenta en un dngulo 6, cuyo valor se calcula en la ecuacién

|s) = alw) +b|s') = )+ |s") (A.14)

]\\/]T\_fl = sm(g) = 1—% = 0 = 28in_1(\/1ﬁ) (A.15)

Sabemos que para cada iteracion el angulo aumenta en 6 y sabemos que la probabilidad
de medir |w) es 1 menos la probabilidad de medir |s'), que sabemos que es cos?(¢) siendo

4 /
608(5) = (s|s') =
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w)
A

U,U, |s)

/ 0/2 é'w

Uy ls)

Figura A.1: Representacién geométrica de una iteracién de Grover[l].

1
¢ = t§9 siendo t el ntimero de iteraciones de Grover aplicadas. De esta forma sabemos que la
1
probabilidad de medir |w) es sin?((t + 5)0)

Calculando la derivada de esta funcién con respecto a ¢t (nimero de iteraciones) podemos
encontrar los maximos de dicha funcién, y el primero de ellos serd aquel que nos de el mejor
resultado de Grover en el menor ntimero de iteraciones. Como se calcula en la ecuacion [A.16]

(sinz(téﬁ))’ =0« 2sin((t + %)9)003(@ + %)9)0 =0«

1 1
<:>(t+§)9:0\/(t+§)9:

1
Como t debe ser un niimero positivo, sabemos que t = 2% — 3 y despejando la ecuacién en
de la que sacamos que la complejidad del algoritmo de Grover es O(vV/'N).

1 1
limy—eo(sin™H(—)) = — A17
Noelsin ) = s (A.17)
T 1 T 1 7™V N — 2
I IO S Al
t oY 2:>t 2:>t 1 (A.18)

A.4.2. Bisqueda de varios elementos

En este modelo del algoritmo, el estado w es la suma de més de un estado buscado, de forma

k
que su probabilidad de ser resultado sobre el estado |s) es \/—N donde k es el nimero de estados

buscados.
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Realizando los céalculos andlogos al modelo bdsico hayamos que 6§ = 25in*1(ﬁ), y por

VN

tanto el nimero de iteraciones éptimo para encontrar una solucién es O(—=).

Vi

El principal problema de este modelo es que comtinmente no se conocera k de antemano, y el
algoritmo empeora la probabilidad de encontrar una solucion si se realizan excesivas iteraciones.

A.4.3. Bisqueda sobre un subgrupo

En este modelo del algoritmo se utiliza una biisqueda sobre n qubits y sobre N elementos,
pero en este caso N no es necesariamente 2". Eso quiere decir que el estado |w) (buscado)
y el estado |s') (estados no buscados) no generan (no se encuentra en su plano) el estado de
superposicién |s) sobre todos los qubits.

Si no modificamos el oraculo ni el amplificador de amplitud, obtenemos que debemos realizar
el algoritmo un nimero de iteraciones O(v/2") en vez de O(VN); N < 2", lo que no es una
solucién eficiente.

Si hallamos el vector superposicion |ss) solo para los elementos del subgrupo donde queremos
buscar, podremos generar un amplificador de amplitud de la forma (Uys| = [ss) (ss| — I ¥
usamos como estado de entrada al algoritmo el estado |s;) tendremos una complejidad para
este algoritmo de O(vV/N).

La nueva amplificacién de amplitud (Uys| v el estado |ss) se pueden alcanzar gracias al algoritmo
QCMD.

A.5. Matrices relativas al algoritmo de Grover

En esta seccién vamos a ver las matrices relativas a las transformaciones relativas al algo-
ritmo. Estas matrices pueden generarse mediante circuitos descritos en el capitulo ?7.

A.5.1. Oraculo

La matriz ordculo de un algoritmo de Grover tendra una forma como donde a; = —1
si en la posicién ¢ se encuentra un estado a buscar, o a; = 1 en otro caso.

a -+ 0
(A.19)

A.5.2. Amplificacion de amplitud

Esta matriz se genera con la multiplicacién de los estados |s) (s|, que genera una matriz con

1 . o . .
todos sus valores ——. Y a esta matriz se le resta la matriz identidad, como se ve en la ecuacién

[A.200 VN
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A.5.3.

- 5

- -

b
VN

-1

Variante de amplificacion de amplitud

1

=

(A.20)

Para trabajar sobre un subgrupo de elementos, debemos modificar la matriz de amplifica-
cién de estado, de forma que aquellos estados con los que no trabajemos queden a 0 sus filas

y columnas salvo el elemento de la diagonal. La diagonal solucién vendria dada por la matriz
mostrada en [A 211

Para conseguir el estado de superposicién sobre solo algunos elementos también se puede
usar el algoritmo QCMD para generar un circuito previo a la entrada del algoritmo.

2l

%‘ —_.

)

o O O O

-

% —_.

XXX
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Giros basicos

En este anexo se recogen las demostraciones relativas a los giros basicos sobre la esfera de
Bloch. La computaciéon cudntica ain no estd estandarizada, por lo que los giros elegidos en
este trabajo no tienen porqué ser los existentes a nivel hardware en los distintos ordenadores
cuanticos.

Se ha elegido trabajar sobre estos giros debido a que son los méas simples y mas faciles para
calcular con ellos.

B.1. Demostracién de matrices de giro

En esta seccién se demuestra que las matrices tomadas para estos giros son, en verdad, giros
sobre la esfera de bloch. En la tabla se muestran las matrices de los giros utilizados en el
trabajo, que representan giros sobre cada uno de los ejes de la esfera.

X(a) Y(8) Z(v)
gos(%) sin(5)i ] [ cc?s(g) —sin(g) ] [ 1 0 ]
2

0 e

Tabla B.I: Representacién matricial de los giros bésicos.

Giro Z

Puntos fijos En las ecuaciones y [B:2] se ve demostrado cémo un giro Z no modifica
los estados |0) y |1), que se encuentran en los puntos donde el eje Z corta la esfera.

@@=y o lo]=10]=1 (B.1)

2@ =g oy ][5 ] =L |77 ooy e ] =1 ] =m0 2

XXXI



Algoritmo de Diserio Matricial de Circuitos Cudnticos

Giros ejemplo En las ecuaciones [B.3]y [B-4] se muestran los estados a los que se modifican
el estado estandar |+). Si se contrasta en una esfera de Bloch se ve que el resultado es el esperado
para un giro en el eje Z.

eaom=o S 51450 B3
e =g T 5= 7= (B.4)

Demostracién general En la ecuacién se demuestra de forma generalizada que esta
matriz representa un giro en el eje Z.

<Z(‘“)‘< ity >> B [ 0 ) ] [ A ] B [ ino/eo e | B
Giro X

Puntos fijos En las ecuaciones y se ve demostrado cémo un giro X no modifica
los estados |+) y |—), que se encuentran en los puntos donde el eje X corta la esfera.

cos(a/2) + sin(a/2)i | 1 e(a/2) | 1T _ +)

(B.6)

(X(@)|+) = [ ;Z-f((s//;))i ii:s((z//é))i ] [ | ]

cos(v/2) sin(a/Q)i][ 1 ] 12 [cos(a/2)—sm(a/2>i] 1 [e(—a/%]l:H

<X(a)\—>={5m(a/2)¢ cos(a/2) ~1 cos(a/2) — sin(a/2)i | 2 | e(—a/2) | /2
(B.7)

Giros ejemplo En las ecuaciones [B.§ y [B-9 se muestran los estados a los que se modifican
el estado estandar |0). Si se contrasta en una esfera de Bloch se ve que el resultado es el esperado
para un giro en el eje X.

00 = | S iy | Lo] = Lomieran | =7 ]=m @9

(X (m/2)[0) = [ s,cif((://f))i ii:s((jr//i))i ] [ 0 } = [ ;z'os((://f))i ] = [ ; } \}5 =l (B9

Demostracién general En la ecuacién se demuestra representa un giro en el eje X
para cualquier estado en el plano Y Z (para cualquier otro estado, la modificacién de los d&ngulos
no sigue una combinacién lineal o patrén razonable).

(x| (oY) <[ ooy smberi] [ ool ] -

)
| cos(a/2)cos(p/2) — sin(a/2)sin(p/2) | | cos((a+¢)/2) |
a [ sin(a/2)cos(p/2)i + cos(a/2)sin(p/2)i } N { cos((a+ ) /2)i ] = (B.10)
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Giro'Y

Puntos fijos En las ecuaciones y se ve demostrado cémo un giro Y no modifica
los estados |i) v |j), que se encuentran en los puntos donde el eje Y corta la esfera.

oom =[S 1) e e ) G [ |

¥ (@)]j) = [ cos(a/2) —sin(a/2) } [ _1 } 1 [ cos(a/2) + sin(o/2)i ] 12 _ [ e(a/2) ] 1

sin(a/2)  cos(a/2) NG sin(a/2) — cos(a/2)i —ie(a/2) \ﬁ = 17)
(B.12)

Giros ejemplo En las ecuaciones [B.13] y [B.14] se muestran los estados a los que se modi-
fican el estado estdndar |0). Si se contrasta en una esfera de Bloch se ve que el resultado es el
esperado para un giro en el eje Y.

vom- (23 2R 1) (R0 o

o= [ 8 o |[o] =L |- [1]55 -1 @9

Demostracién general En la ecuacién se demuestra representa un giro en el eje Y’
para cualquier estado en el plano X Z (para cualquier otro estado, la modificacién de los d&ngulos
no sigue una combinacién lineal o patrén razonable).

(ro|( ez )= [ i) oty | it | =
_ [ cos(a/2)cos(0/2) = sin(a/2)sin(e/2) | _ [ cos((a+9)/2) ] g5
{sm(a/mcos(wz)+cos<a/2> (90/2)] [sm((aﬂo)/?) (519
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B.2. Demostracién de sobreyectividad

En esta seccién vamos a demostrar que el uso de estos giros generan cualquier transformacién
de giro sobre una esfera de Bloch.

Sobreyectividad sobre un estado En la ecuacion se demuestra como, para V estados
lx), |ly), (Z(a), Y (B) tal que (Z(a)Y (B)|x) = |y). En este caso se han usado los giros Z e Y
pero la demostracion se puede realizar también para cualquier concatenacion.

El célculo de 8 y w se resuelve con complejas ecuaciones trigonométricas de grado 2 que se deja
para el lector.

sin(p/2)e(0) sin(¢/2)e(7y)

O sntart )) = | sintopnete) |
<Z(“)‘< oyt )) = L smoyontoy | B0

Sobreyectividad sobre un giro La ecuacion demuestra que para YU transformacion
de la esfera de Bloch, A, B, C tal que ABC = U. Para esta demostracién se usa la matriz de
giro que representa cualquie posible giro de la esfera de Bloch[22].

0= (o2 Vil = (o2 ) (B.16)

@ @zei=[ o & ||l o Lo ]

[ cos(x/2)  —sin(x/2)e(y)
= [ sin(x/2)e(z) cos(x/2)e(y + z) ] (B.18)

cos(e/2)  —sin(/2e(y)
{ sin(x/2)e(z) cos(x/2)e(y + 2) } (B.19)

B.3. Demostracion de suma de angulos con concatenacién de
giros

En esta seccién se demuestra como la concatenacion de dos giros sobre el mismo eje resultan
en un mismo giro cuyo angulo es la suma de los dngulos anteriores.

@@= {5 oy [0 an ]~ [s qn] (520

[ cos(a/2) sin(a/2)i | [ cos(8/2) sin(B/2)i |
(X ()X ()] = [ sin(a/2)i  cos(a/2) ] | sin(B/2)i  cos(B/2) } B
_ [ cos(a/2)cos(/2) — sin(a/2)sin(5/2) cos(a/2)sin(B/2)i + sin(a/2)cos(/2)i ] _
sin(a/2)cos(5/2)i + cos(a/2sin(B/2))i  cos(a/2)cos(B/2) — sin(a/2)sin(5/2)
| cos((a+B)/2) sin((a+B)/2)i
ol R g L)
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| cos(a/2) —sin(a/2) cos(B/2) —sin(p/2) |
V()Y (8)] = [ sin(a/2)  cos(a/2) ] [ sin(B/2) cos(B/2) ] a
_ [ cos(a/2)cos(B/2) — sin(a/2)sin(B/2) —cos(a/2)sin(5/2) — sin(a/2)cos(5/2) } _
sin(a/2)cos(/2) + cos(a/2sin(B/2))  cos(a/2)cos(5/2) — sin(a/2)sin(B/2)
_ | cos((a@+p)/2) —sin((a+5)/2)
~ [l e | ©2)
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Demostraciones matematicas del diseno de QCMD

En este anexo se recogen las demostraciones relativas a los pasos de creacién de las nuevas
puertas/circuitos. Se demuestran tanto la matriz solucién de cada puerta, como la puerta in-
versién, y en algunos casos se demuestra explicitamente la complejidad. Se ha prescindido de
las demostraciones triviales.

C.1. Giro condicionado

Demostramos que los disenos de cada una de las puertas propuestas generan la matriz
deseada, y la demostracion de validez de las puertas inversas a cada giro.

Giro Z

Diseno Con respecto a la figura demostramos la matriz solucién.

10 0 0 1 0 0 0
01 0 0 0 e@/2) 0 0 |
00 ea/2) 0 0 0 1 0
00 0 e(a/2) 0 0 0 e(a/2)
10 00 1 0 0 0 1 00 0]
0100]]0 e(—a/2) 0 0 0100
0 0 01 0 0 1 0 000 1|
0010/ 0 0 0 e-a/2|l0010]
1 0 0 0 1 0 0 0]
0 a2y 0 0 0 e(-a/2) 0 0]
10 0 e(a/2) 0 0 0 e(—a/2) 0|
0 0 0 e(a) 0 0 0 1 |
1 00 O
01 0 O
{001 o0 (C.1)
0 0 0 €a)
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Inversa La demostracion de la inversa de esta puerta es trivial. Z(a)Z(—a)

Giro Y Con respecto a la figura demostramos la matriz solucién.

Diseno
cos(a/2) —sin(a/2) 0 0 1 0 0 0]
sin(a/2)  cos(a/2) 0 0 01 00
0 0 cos(af2) —sin(a/2) | |0 0 0 1"
0 0 sin(a/2)  cos(a/2) 0 01 0]
cos(—a/2) —sin(—a/2) 0 0 1 0 0 0
sin(—a/2)  cos(—a/2) 0 0 ] 0100
0 0 cos(—a/2) —sin(—a/2) 0 001
0 0 sin(—a/2)  cos(—a/2) 0010
cos(a/2) —sin(a/2) 0 0
_ | sin(a/2)  cos(a/2) 0 0 .
0 0 cos(a/2) —sin(a/2)
0 0 sin(a/2)  cos(a/2)
cos(a/2)  sin(a/2) 0 0
—sin(a/2) cos(a/2) 0 0 _
0 0 cos(a/2) —sin(a/2)
0 0 sin(a/2)  cos(a/2)
10 0 0
01 0 0
1 0 0 cos(a) —sin(a) (C.2)
0 0 sin(a) cos(a)
Inversa
10 0 0 10 0 0
0 1 0 0 01 0 0 .
0 0 cos(a) —sin(a) 0 0 cos(—a) —sin(—a)
0 0 sin(a) cos(a) 0 0 sin(—a) cos(—a)
10 0 0 10 0 0
1o o 0 01 0 o |
0 0 cos(a) —sin(a) 0 0 cos(a) sin(a)
0 0 sin(a) cos(a) 0 0 —sin(a) cos(a)
10 0 0 1 0 00
1o 0 0 lo1o00
00 cos(a)? + sin(a)? cos(a)sin(a) — cos(a)sin(a) 0010
0 0 cos(a)sin(a) — cos(a)sin(a) cos(a)? + sin(a)? 0 001
(C.3)

Giro X Con respecto a la dltima figura de demostramos la matriz solucién.

XXXVANEXO C: DEMOSTRACIONES MATEMATICAS DEL DISENO DE QCMD



Algoritmo de Diserio Matricial de Circuitos Cudnticos

Diseno

|

S O

oS - O

— O O

Inversa

o —H O O

— O O O

— O

S O O

o O —H O

o —H O O
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CAR)
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§ %
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~

aan/
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S5
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cos(a)? — sin(a)?i
cos(a)sin(a)i — cos(a)sin(a)i

o —H O O

— o O O
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C.2. Giro condicionado multiple

Giro de 2 sources En la tabla se ve una tabla con el resultado del circuito de la figura
[4.7 para cada uno de los inputs ldgicos.

qubit | |00) | 01) |10) 111)
q0 %) %) %) %)
q1 @ @ XX =0 XX =0

g2 =target | @ | U(a/2)U(-a/2) =2 | U(—a/2)U(a/2) =@ | U(a/2)U(a/2) = U(c)

Tabla C.I: Tabla de verdad para giro condicionado miltiple de 2 qubits

Giro de 3 sources En la tabla se ve una tabla con el resultado del circuito de la figura
4.8 para cada uno de los inputs ldgicos.

qubit 1000) 1001) 1010) 1011)
q0 2 @ o o
ql XX =@ o XX =@ o
q2 XX =0 XX =0 XX =0 XX =0
q3 = target 1%) %) 1) Ula/2)U(—a/2) =@
qubit 100} 101) 110) 111
q0 o @ @ o
ql XXXX =0 XX =0 XXXX =0 XX =0
q2 XXXX =0 XXXX =0 | XXXX=0 XXXX =09
g3 =target | U(—a/2)U(a/2) = @ %) %) U(a/2)U(a/2) = Ul(a)

Tabla C.II: Tabla de verdad para giro condicionado multiple de 3 qubits

Giro de n sources Por inducciéon se puede demostrar que cualquier puerta condicionada
multiple con méas de 3 sources, en verdad genera el giro esperado.

Esto se puede demostrar dividiendo el diseno de esta puerta en 3 apartados, uno por cada puerta
de menor nimero de sources.

En el primer apartado, el giro solo se activara si Vi = 2...n ¢; = 1.

En el segundo apartado, solo se activard si g =0y Vi = 2..n ¢; = 1, lo que haré que se deshaga
el giro anterior; osigr =1y Vi=2..n ¢; = 0.

En el tercer apartado, la puerta solo se activara sig, =0y Vi=2.n—1¢ =0y q =1
lo que desharia el giro del apartado 2 en el caso de que todos los qubits esten no activados; o
si Vi = 1..n ¢; = 1 lo que generaria un giro, que sumado al del apartado 1 sumarian el giro
solucién.

Complejidad En la ecuacién se demuestra la complejidad total de la puerta de giro
multiple dependiendo del niimero del nimero de qubits source.

Pr(s)=24+2(s—1)+2(s—2)+3(Pn(s—1)) =4s —4+3(Pn(s—1)) (C.6)
Pn(1)=5 (C.7)

Pn(2) = 24 3(Pn(1)) = 17 (C.8)
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1
POEIEEICRESY (C.9)
=0
) g = (23" =37+ 1) (C.10)
=0

Pu(s) =4+2(s—1)+2(s —2) + 3(Pn(s — 1)) =
=4(s—1)+3-4(s—2)+32P, (s —2) =

n
=4 Bs—1-i=
=0
=2s3°71 —25-2.32 4225324632432 -3+ 3°2P,(2) =

=22.3"%2-2s—1=
=0(3°) (C.11)

Disefio 2 Demostramos en la validez de la puerta segiin el diseno de la figura para
n qubits source y n — 1 qubits auxiliares.

aux] = $1AN Dso; aurs = aur1 AN Ds3; aur; = aux;—1 ANDs;11Vi=2,3..n—1=
= aurp—1 = AND;_(s;) (C.12)

De esta forma podemos saber que la puerta con target auz,_1 solo se activard cuando todos los
sources estén activados.
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C.3. Toffoli

Demostracién del diseno Por la ecuacién demostramos la validez del disefio de la
puerta Toffoli vista en la figura

1 0 0 0 0 O 0 0 100 0O0O0O0 O
010000 0 0 0100O0O0O0 O
001 00O 0 0 001 0O0O0O0 O
000 1 0O 0 0 60o00100O0 0 | _
000 O01FPO 0 0 000O0O1O0O0 O |
0 00 0 O01 0 0 00 0O0O0OT1O0 O
0 00 0 0 0 cos(n/2) —sin(mw/2) 000O0OOT1 O

(00000 0 sin(n/2) cos(x/2) | L0 00000 0 e |

1 0 000 OO 0771 0O0O0O0O0O0 0T
01 000O0O0 O 01 00O0O0O0 O
001 00 0O O 001 0O0O0O0 O
0001 O0O0O0 O 00010O0O0 O |
0000100 O 000O0O1O0O0 O |
000 0O0OT1TO0 O 0000O0OT1TO0 O
000 O0O0O0OTO0O -1 00 0O0O0OO0OT1 O
(0000001 0][0000000 -1,
(1 0 0 0 0 0O 0 07
01 0 0O0O0O0OGO
001 00 O0O0OTGO
0001 O0O0O0GO0
00001000 (C.13)
0000 O0OT1O0O0
000 0 O0O0OTO01
(000000 10|

Inversa Demostrar que la puerta Toffoli es su propia inversa es un célculo trivial.

C.4. Puerta de giro especial

Demostracién del disefio Demostramos en[C.14] que mediante el disefio figura llegamos
a la matriz deseada (usando la puerta identidad condicionada).

- 0] 1 lal
Para x = fase(a), y = fase(b), § = sin™! | ——— | = cos _—
“ ) Vlal? +[b? Vlal* +[b?

T o [0 o | Lo oty | Lo ccorern |7
_ [ e(—z) 0 } [cos(@) sin(0)e(— y—i—x) ] _
0 e(y) sin(0) —cos(0)e(—y + x)
Sy vt i [ S
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Inversa Demostramos la validez de la inversién de esta puerta segin la figura[4.5] en la ecua-

cion [C15
b B T1 0
—a* o 101

(C.15)
Puerta de intercambio

1
lal? +[bf?

a

b

|CL’2 + ‘b’Q a*b* — a*b*

1
ab — ab b2 + |al? ] la|? + |b|?

C.5.

Se demuestra el efecto de los circuitos mostrados en la figura y para cualquier puerta
con una matriz como la mencionada en la seccién en las ecuacién

1000 app  apl A2 Qo3 app apl Qo2 Qo3
0 001 alp @11 @12 13 | _ | @30 @31 a32 433
0 010 asp a21 G2 a23 as a21 a2 a23
0100 azp asy as2 ass ayp a1 a2 a3
app apl Qo2 Qo3 10 00 agp ap3 Qo2 Aol
alp a1l a2 a3 000 1| _|ao a3 a2 an
a0 a1 Q22 a3 0010 a0 Q23 Q22 21
azp asy aszz as3 0100 azp as3 asx asi
1000 apo  apl a2 Qo3 1000 [ a0 aos ao2 ao
0 0 01 alp ail a2 a3 0 0 0 1| | a3z azz azx az
0010 a0 G21 Q22 a23 0 0 1 0| | axn as ax axn
01 00 asp a3y azz2 ass 01 00 _aw ais aiz2 aii
1 0 0 O 1 0 0 O 1 0 0 0] 1 0 0 O
1 1 1
0 0 0 0 0 0 0 0 0 _ 0 d ¢ O (C.16)
0 01 0 0 0 a b 0 01 0 0 b a O
01 0 0 0 0 ¢ d 01 0 0 0 0 0 1
C.6. Puerta AMS

La matriz solucién a esta puerta se consigue de forma trivial.

Inversa Demostramos por la ecuacion la validez de la puerta inversién usando la puerta
inversién del giro especial.

C.7. Puerta diagonal

En las ecuaciones [C.18] [C.19] y [C.20] se muestra la generaciéon de cada paso de la puerta
diagonal, y en la ecuacién se muestra la matriz solucién de la concatenacién de estas.
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00017100 O 00 0
0100|[010 o0 010
0010[001 0 00 1
100 0[/[000 €a)|[][100
10007100 0 7[100
0001[[010 o0 00 0
0010[[001 0 00 1
(01 00][000€«B[[010
10007100 0 J[100
0100([[010 o0 010
0001[[001 0 00 0
(001 0[[000¢e€r]|l0oo01
@) 00071 0 00][1 0 0O
0 1 00/]]|0eB 00[]01 o0
0 01 0[]0 0 1 0[]0 0 ey
0 00 1][0 0 o01[][00 0

C.8. Puerta matricial

o = O O o O = O o O O

= o O O

(92
CcCoo0oRxy coor
S~—

o O o= o O o=

o O = O

Buly
oo op
~—

()
—
COCRC or oo

0 00
1 00
010
0 01

[}
~~
com o
S~—
o~ oo
_ o oo

coro
BN
oS oo
SN—
o oo

N—

Jul

oo o
oo =

Jul
SiS)
S~—

o O O

)
—

(=%
—

(C.18)

(C.19)

(C.20)

(C.21)

Las ecuaciones de [C.22] hasta [C.28] representan la divisién de una matriz en submatrices
unitarias de tamano 2 x 2, generables mediante una puerta AMS. De esta forma, sabemos que
concatenando en orden inverso cada una de las inversas de estas puertas obtendremos un circuito

cuya matriz solucién sea la matriz principal.

i ab a¥ 7
00 10 0 0
Vl0aool? + [awl>  v/]aoo|? + |aio/? @00
alO _a/OO 0 0 alo
V0aool? + lawo?  v/Jaoo|? + |aiof? azo
0 0 1 0 aso
i 0 0 01
[ ago as 0 T
Vlago|* + lazol? Vlagol* + lazol? apo
0 1 0 0 0
a20 —a60 0 a20
vV lagol? + lazol? Vagol? + lagol? aso
i 0 0 0 1

ao1
ai
azi
asi

Qo1
ary
a21
a31

ao2
a2
a2
as2

Qp2
ayg
a22
a32

ao3
a2
az3
ass

Qp3
ayg
a23
ass

)

a0
aso

1
Qpo

aso

Qo1
ay
a1
a3l

1
Qg1

ary
Qg
a3l

Qp2
ajo
a2
a32

Qp3
ajo
a23
ass

(C.22)

"
Qpa
!
aio
li
)

a32

"
Qg3
!
aio
!
Qo3

ass

(C.23)
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- V/ES * -

Qoo 00 a3

\a \2 |lazol? |a |2 |azol? af)/o agl a82 06/3
0 10 0 0 ayy dy ajy |
0 0 1 0// 0 abyy dbyy abg |
aso 00 —Ago asp as1 a3z ass

lago|® + |asol? Vlagol* + lasol?

[ 1 0 0 07
ary asy 1 0 0 0
I 12 /|2 2 2 0 / / /
V0d] T laty[2 /laq] - |ad, | ayp; Gz A | _
91 —a’y 0 ay ahy as
Vi0d P + a2 /lal 2+ [ah, 2 0 df ag ai
L 0 0 0 1 |
M1 0 0 0 ]
aii 0 az 1 0 0 0
|af;]"? + lag; |2 V1ali [ + a2 0 af; ajy ajy | _
0 0 1 0 0 0 afy al
0 ajsy 0 —ay 0 a3 a3y aj;
L Va2 + |ag ? Va2 +fay 2
r1 0 0 0 7
1 0 0 1 0 O 0
0 ag; az; 01 0 0 |
Vla, |'2 + [a%, 2 V/laf,]? + |asy| 0 0 a5 ay
0 0 ass —a, 0 0 a3 az
: Vi0abo|? + a5 /la5yl? + |agy[? ]
1 00 0 1 00 0 1 00
010 0 01 0 0 10 10
0 0 1 0 0 0 1 0 “ 10 0 1
0 0 0 €ela) 0 0 0 e(—a) 0 0 0

C.9. Uso del diseno 2

_ o O O

o O O

o O o

o O O

0 0
a/11 a/12 P
agy a/22 Qo3
asz; Qagzy G33
(C.24)
0 0 0
afy afy afy
1 1
9 a22 a23
az; Ay a3
(C.25)
0O O 0
1 0 0
0 a/2/2 a/2/3
0 a3y asg
(C.26)
00 O
1 0 O
01 0
0 0 €(a)
(C.27)
(C.28)

Se demuestra en la ecuacion que el uso del diseno 2 solo es eficiente a partir de un

ntmero de qubits, debido al alto coste de usar puertas Toffoli.

Py (s) =4(s — 1) + 3Pp (s — 1) ~ 22-3°72
Pra2)(s) = 25Py(2) = 4sPp,(q1)(2) =~ 68s

Pra2)(8) < Pran)(s) < 68s < 22372 & 5 > 4,369

(C.31)
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Demostramos asi que, sin un diseno méas 6ptimo de una puerta Toffoli, por debajo de 5 qubits
es mas eficiente el diseno 1 para una puerta de giro condicionada miltiple, y por lo tanto, para
cualquiera de las puertas superiores.
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Representaciones de giros en esfera de Bloch

D.1. Representacion de un giro H

En la figura se ve representado un giro H. Cada estado representado se transforma en
el estado con su mismo color.

Figura D.1: Giro H.

XLVII
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D.2. Representacion de un giro condicionado

D.2.1. Giro con target inactivo
Aqui se representa el caso de un giro condicionado sobre el eje Y de dngulo « en el caso

en que el source no esté activo, por lo que se generard un giro en una direccién, y el mismo en
direccién contraria. Se puede ver como esta concatenacion deja todos los estados sin modificar.

Figura D.2: Representacién de concatenacién de giros dos giros en el eje Y opuestos.
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D.2.2. Giro con target activo

Aqui se representa el caso de un giro condicionado sobre el eje Y de dngulo « en el caso en
que el source esté activo, por lo que se generard un giro « sobre Y, un giro de angulo 7 sobre
el eje Z, un giro sobre Y de angulo —« y por ultimo otro giro de 7 sobre Z. Se puede ver como
el estado se ha modificado un angulo « sobre el eje Y.

N

Figura D.3: Representacién de concatenacién de dos giros en el eje Y opuestos con giros Z
intercalados.
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Ejemplo de funcionamiento del algoritmo QCMD

En este anexo se explica el funcionamiento de esta puerta mediante un pequeno ejemplo de
un circuito de 2 qubits. En la ecuacion se ve un ejemplo de matriz que queremos construir
M. La demostracién de que dicha matriz es unitaria (construible por un ordenador cuéntico)
se puede ver en la ecuacién [E.2]

Al dividir esta matriz en submatrices, empezamos por el elemento méas arriba a la izquierda
de la matriz, que se ve en negrita en la figura[E.I] La submatriz que queremos generar se mues-
tra en la ecuacién [E-3] denominada Vj. Vemos en la ecuacién [E.4] como esta matriz transforma
nuestra matriz destino en una matriz similar pero con un 0 en el valor que estabamos modifi-
cando.

Siguiendo con el mismo procedimiento, buscamos la siguiente matriz, que serd la mostrada
en la ecuacién denominada V;. Vemos en la ecuacion [E.6] como hemos llegado a una matriz
identidad.

Por dltimo vemos que queda un valor dentro de la diagonal que no se ha modificado. Para
esto usamos la matriz V5 [E7] y obtenemos la matriz identidad segtn la ecuacién

De esta forma, sabemos que la concatenacién de las matrices V; V{"Vy" dard lugar a la matriz
M. Esto se demuestra en la ecuacién [E.9]

Generando las puertas AMS con los pardmetros necesarios y concatenandolas podemos crear
un circuito que se ajuste a la matrlz M De esta forma (Up| serd una puerta AMS con pardme-

tros: fila=1, columna=0, a= =——; cuya matrix es Vo- Y la puerta (Uy| serd una puerta

7
\@

AMS con pardametros: fila=1, columna=0, a=
Nei \f

Pueden existir valores en la diagonal que no se hayan modificado por estas puertas, como
por ejemplo el ¢ de abajo derecha de M. Para esto se genera al final una matriz diagonal que
transforma estos valores a una matriz identidad. En el caso de la matriz M, la tnica puerta
necesaria para esta matriz diagonal sera la referenete al ultimo valor, que se puede hacer me-

; cuya matrix es V1

LI
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diante un giro condicionado miltiple sobre Z de angulo 7, o la puerta (Us| con matriz VQT.

Por lo tanto concluimos que el circuito (UyU;Us| mostrado en la figura (ap = %,
1 V2

1
bp = —, a1 = —, by = eneran la matriz M buscada. Este proceso se puede
0= Ha= b \/3) g p p

generalizar a cualquier matriz unitaria.

q0 ’ — -
I - AMS(c=0, f =1,a1,b AMS(c =0, f =2, a0,b
" Z7C772) (c=0,f=1a1,b1)| | (¢=0,f=2,a0,b0) |

Figura E.1: Diseno de puerta de ajuste matricial para 2 qubits.

i1 i
0
F R
1
0
M=|+v3 V2 6 (E.1)
Loﬂo
V3 V3
00 0 |
01 i =2 L1 ]
S — — 0 0
MM*=| V3 V2 6 V2 V2 :8328:1(]3.2)
V3 V3 V6 V6 V3 !
00 0 ]l 0o o0 0 |
i1 i
V3 V3 4
@Q _;ZLOO_
\45\/3 \{iﬂ
—1 —1
Vo=| 5 & =| &% 5 00 (E.3)
Y3 V3 g \??10
V2 V2
5 .0 o0 o0 1]
0 0 10
0 0 0 1]
T 1 i 1
- i1 1] = — = 0 -2 1 1
0 0 3 9 6 0 — 0
V2 VA ‘({(0 NG
e I B S B ICCHRCINC A e I A T BT
o 0 1ol L oo 22, NN
0 001-\650\632‘ 0 0 0 ]
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(E.5)
(E.6)
(E.7)
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Pruebas del algoritmo QQCMD

F.1. Pruebas en el simulador

Aqui se recoge el cédigo de salida del programa explicado en la seccién[5.2] donde se ha usado
el simulador de la API de Python QISKit para comprobar el funcionamiento de las distintas
puertas implementadas. En el cédigo se recoge el comando utilizado para lanzar dichos test,
y en el codigo se recoge la salida por pantalla de dicho script, donde se ven los pasos del
test y las soluciones obtenidas y simuladas. Recodar que el niimero de puertas calculado en la
seccién [4.4] era para un disenio en concreto, y esta implementacion sigue determinadas decisiones
de disenio que pueden hacer que estos valores cambien.
python agp-matrix_test.py —n 3 —i 9 —v —a > test.out

Listing F.1: Comando de ejecucién

Assembler written with 9777 gates

Generated matrix
[[-0.75+0.j 0.25-0.j 0.25—0.j 0.25-0.j 0.25—0.j 0.25—0.j 0.25-0.j 0.25-0.]
]

[ 0.25-0.j —0.75+0.j 0.25—-0.j 0.25—-0.j 0.25—-0.j 0.25—0.j 0.25—-0.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j —0.754+0.j 0.25-0.j 0.25-0.j 0.25—0.j 0.25—0.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j 0.25—0.j —0.75+0.j 0.25-0.j 0.25—0.j 0.25—0.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j 0.25—0.j 0.25-0.j —0.7540.j 0.25—0.j 0.25—0.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j 0.25—0.j 0.25-0.j 0.25-0.j —0.7540.j 0.25—0.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j 0.25—0.j 0.25-0.j 0.25-0.j 0.25—0.j —0.7540.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j 0.25—0.j 0.25—-0.j 0.25-0.j 0.25-0.j 0.25—0.j —0.75+0.]

]

Simulated matrix
[[—0.7540.j 0.25-0.j 0.25—0.j 0.25—0.j 0.25-0.j 0.25-0.j 0.25—-0.j 0.25—0.]j
]

[ 0.25-0.j —0.75+0.j 0.25-0.j 0.25—-0.j 0.25—-0.j 0.25—0.j 0.25—-0.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j —0.754+0.j 0.25-0.j 0.25-0.j 0.25—0.j 0.25—0.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j 0.25—0.j —0.75+0.j 0.25—-0.j 0.25—0.j 0.25—0.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j 0.25—0.j 0.25-0.j —0.7540.j 0.25—0.j 0.25—0.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j 0.25—0.j 0.25-0.j 0.25-0.j —0.7540.j 0.25—0.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j 0.25—0.j 0.25-0.j 0.25-0.j 0.25—0.j —0.7540.j 0.25-0.j]
[ 0.25-0.j 0.25-0.j 0.25-0.j 0.25—0.j 0.25-0.j 0.25—-0.j 0.25—0.j —0.75+0.j

]
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F.2. Pruebas en el ordenador

Aqui se recogen las distintas pruebas que se han realizado contra el ordenador cuantico real
IBM-(Q a través del servicio web proporrcionado por QISKit.

Podemos apreciar, como los circuitos con 2 qubits generan mejores resultados que aquellos
con 3 qubits. Esto en general se debe a que una puerta para 3 qubits requiere de una profundidad
mucho mayor que para 2 qubits. También observamos que para las puertas de intercambio,
aquellas que modifican menos qubits, y por tanto requieren de menos puertas toffoli [F.6| obtiene
mejores resultados que aquellas que modifican mas de un qubit
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Figura F.1: Resultados del ordenador cuantico para un circuito de 2 qubits I.
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Figura F.2: Resultados del ordenador cuantico para un circuito de 2 qubits II.
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Figura F.3: Resultados del ordenador cuantico para un circuito de 2 qubits III.
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Figura F.4: Resultados del ordenador cudntico para un circuito de 2 qubits IV.
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Figura F.5: Resultados del ordenador cuantico para un circuito de 3 qubits I.
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Figura F.6: Resultados del ordenador cudntico para un circuito de 3 qubits IL.
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Figura F.7: Resultados del ordenador cuantico para un circuito de 3 qubits III.
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Figura F.8: Resultados del ordenador cudntico para un circuito de 3 qubits IV.
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Figura F.9: Resultados del ordenador cuantico para un circuito de 3 qubits V.
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